資源描述:
《直線方程教參.doc》由會員上傳分享,免費在線閱讀,更多相關內容在教育資源-天天文庫。
1、第9章直線方程教學要求1、理解“直線的方程”和“方程的直線”的概念;理解“傾斜角”、“斜率”的概念;掌握求“斜率”的方法和公式;2、掌握直線方程的“點斜式”、“兩點式”以及“直線方程的一般式”;了解“直線方程的參數(shù)式”;3、掌握兩條直線平行及垂直的的條件,掌握求兩直線交點和夾角、點到直線的距離的方法和公式;4、了解二元一次不等式表示平面區(qū)域的方法,以及簡單的線性規(guī)劃的問題;教材分析一、本章的地位與結構1、本章的地位直線方程是解析幾何中很重要的一個內容。它是在解決了平面直角坐標系中“點”與“數(shù)”之間的對應關系后,再將幾何的“形”與代數(shù)的“方程”進行了對應分析,進而嘗試了用代數(shù)的
2、方法討論幾何的問題。在數(shù)學研究方法中這是一個飛躍,是形成學生“數(shù)、形結合”的觀點的一個重要的教學內容。在本章中所用到的數(shù)學方法,將在后一章《二次曲線》中進一步使用。因此,學好本章內容也是學好下一章內容的重要基礎。2、本章的結構體系本章主要分為三節(jié),第一節(jié)“直線方程的概念”,主要介紹“直線的方程”和“方程的直線”這兩個概念,以及“傾斜角”和“斜率”的概念。第二節(jié)“直線方程的幾種形式”,主要介紹直線方程的點斜式、兩點式和直線方程的一般式。第三節(jié)“兩條直線的位置關系及點到直線的距離”,主要介紹用解析法來判斷兩直線位置關系的方法,以及求兩直線交點坐標和夾角,求點到直線的距離和兩直線間
3、的距離的方法;第四節(jié)“二元一次不等式表示的平面區(qū)域”,主要介紹用二元一次方程來表示直角坐標系中的平面區(qū)域,為線性規(guī)劃的問題奠定基礎。本章在內容編排上是從概念入手。首先,通過引入直線方程的概念,將幾何中的“直線”與代數(shù)中的“二元一次方程”對應起來;接著便一步步引導學生由點斜式、兩點式等方法推導直線方程;最后再反過來應用直線方程判斷兩直線的位置關系,求兩直線的交點坐標、夾角等幾何問題。較好地進行了“數(shù)”與“形”的互通和深化。一、本章的重點和難點1、重點直線的斜率,直線方程的點斜式,兩直線平行、垂直的判定,點到直線的距離等是本章的重點。2、難點直線方程的概念,求直線的方程,求兩直線
4、的夾角等是本章的難點。教學建議本章課時數(shù)為10課時,具體分配如下:9.1直線方程的概念約2課時9.2直線方程的幾種形式約3課時9.3兩條直線的位置關系及點到直線的距離約5課時本章中的選學內容《直線的參數(shù)方程》及《二元一次不等式表示的平面區(qū)域》的教學時數(shù)沒有計算在內第一節(jié)直線方程的概念一、關于“直線的方程”的教學點是最基本的幾何元素,在坐標平面內我們可以用坐標來表示點。而直線又可以看作是點的集合或運動的軌跡,根據(jù)直線的條件,我們可以用一組關于動點坐標的方程式來表示直線,這就是所謂直線方程的概念。教材中是通過一次函數(shù)圖像的概念逐步引入直線方程的概念。畫一次函數(shù)圖像,很重要的一步是
5、根據(jù)函數(shù)解析式取值描點,這個過程就反應了點與數(shù)的對應關系。教材中只要求學生了解直線與方程的對應關系,不必過分論證直線與方程的對應關系。一、關于“直線的傾斜角和斜率”的教學1、直線“傾斜角”和“斜率”的概念,可以對照日常生活中的坡度、斜度等概念進行講解,以消除學生的陌生感。在講解斜率時,有必要幫助學生復習正切函數(shù)的相關知識,尤其是特殊角的正切函數(shù)值。2、斜率計算公式是通過向量的方法推導出來的,比較而言這個方法算是比較簡單的了,如果學生基礎較差的話,也可以不講,只要求學生能用即可。3、當直線平行于軸和垂直于軸時,對應的直線傾斜角和斜率比較特殊,應向學生講解清楚,以利于后面求特殊位
6、置的直線方程。4、關于斜率不存在的情況,可以從兩個方面向學生講解:(1)當直線垂直于軸時,傾斜角為900,這時不存在,所以斜率不存在;(2)因為,如果直線垂直于軸,即,所以斜率不存在;5,為幫助學生理解和應用斜率計算公式,教材中安排了三點共線的問題,有必要引導學生掌握,為后面推導直線方程作準備。第一節(jié)直線方程的幾種形式一、關于“直線的點斜式方程”的教學1、直線的點斜式方程是直線方程最基本的一種形式,斜截式方程、兩點式方程、截距式方程都可以看作是點斜式方程的特例。因此,在講解點斜式方程時要重點介紹方程的推導和應用,要給學生充分的練習時間。2、推導點斜式方程主要是根據(jù)斜率計算公式
7、,講解時要強調方程的形式特點。3、教材中是將斜截式方程作為點斜式方程的應用例子來講的,但因為斜截式方程與一次函數(shù)直接關聯(lián),也可以要求學生掌握斜截式方程的相關性質,尤其是掌握根據(jù)斜截式方程來判斷直線斜率的方法。二、關于“直線的兩點式方程”的教學1、推導直線的兩點式方程主要根據(jù)斜率的計算公式和點斜式方程,為便于學生理解和掌握,可以通過實例(如教材中的P7例3)來講解其推導的過程。2、直線方程的截距式方程是通過兩點式來推導的。關于截距的概念也有必要向學生講解。3、為幫助學生加深理解斜率和截距的概念,可以增加如