資源描述:
《塑料齒輪疲勞壽命分析.doc》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在應(yīng)用文檔-天天文庫。
1、1齒輪的疲勞破壞疲勞是一種十分有趣的現(xiàn)象,當(dāng)材料或結(jié)構(gòu)受到多次重復(fù)變化的載荷作用后,應(yīng)力值雖然始終沒有超過材料的強(qiáng)度極限,甚至比屈服極限還低的情況下就可能發(fā)生破壞,這種在交變載荷重復(fù)作用下材料或結(jié)構(gòu)的破壞現(xiàn)象就叫做疲勞破壞。如圖1所示,F(xiàn)表示齒輪嚙合時作用于齒輪上的力。齒輪每旋轉(zhuǎn)一周,輪齒嚙合一次。嚙合時,F(xiàn)由零迅速增加到最大值,然后又減小為零。因此,齒根處的彎曲應(yīng)力or也由零迅速增加到某一最大值再減小為零。此過程隨著齒輪的轉(zhuǎn)動也不停的重復(fù)。應(yīng)力or隨時間t的變化曲線如圖2所示。圖1齒輪嚙合時受力
2、情況圖2齒根應(yīng)力隨時間變化曲線在現(xiàn)代工業(yè)中,很多零件和構(gòu)件都是承受著交變載荷作用,工程塑料齒輪就是其中的典型零件。工程塑料齒輪因其質(zhì)量小、自潤滑、吸振好、噪聲低等優(yōu)點在紡織、印染、造紙和食品等傳動載荷適中的輕工機(jī)械中應(yīng)用很廣。疲勞破壞與傳統(tǒng)的靜力破壞有著許多明顯的本質(zhì)差別:1)靜力破壞是一次最大載荷作用下的破壞;疲勞被壞是多次反復(fù)載荷作用下產(chǎn)生的破壞,它不是短期內(nèi)發(fā)生的,而是要經(jīng)歷一定的時間。2)當(dāng)靜應(yīng)力小于屈服極限或強(qiáng)度極限時,不會發(fā)生靜力破壞;而交變應(yīng)力在遠(yuǎn)小于靜強(qiáng)度極限,甚至小于屈服極限的情
3、況下,疲勞破壞就可能發(fā)生。3)靜力破壞通常有明顯的塑性變形產(chǎn)生;疲勞破壞通常沒有外在宏觀的顯著塑性變形跡象,事先不易覺察出來,這就表明疲勞破壞具有更大的危險性。工程塑料齒輪的疲勞壽命,是設(shè)計人員十分關(guān)注的課題,也是與實際生產(chǎn)緊密相關(guān)的問題。然而,在疲勞載荷作用下的疲勞壽命計算十分復(fù)雜。因為要計算疲勞壽命,必須有精確的載荷譜,材料特性或構(gòu)件的S-N曲線,合適的累積損傷理論,合適的裂紋擴(kuò)展理論等。本文對工程塑料齒輪疲勞分析的最終目的,就是要確定其在各種質(zhì)量情況下的疲勞壽命。通過利用有限元方法和CAE軟
4、件對工程塑料齒輪的疲勞壽命進(jìn)行分析研究有一定工程價值。2工程塑料齒輪材料的確定超高分子量聚乙烯(UHMWPE)是一種綜合性能優(yōu)異的新型熱塑性工程塑料,它的分子結(jié)構(gòu)與普通聚乙烯(PE)完全相同,但相對分子質(zhì)量可達(dá)(1~4)×106。隨著相對分子質(zhì)量的大幅度升高,UHMWPE表現(xiàn)出普通PE所不具備的優(yōu)異性能,如耐磨性、耐沖擊性、低摩擦系數(shù)、耐化學(xué)性和消音性等。UHMWPE耐磨性居工程塑料之首,比尼龍66(PA66)高4倍,是碳鋼、不銹鋼的7—8倍。摩擦因數(shù)僅為0.07~0.11,具有自潤滑性,不粘附性
5、。因此,本文選用UHMWPE作為工程塑料齒輪材料進(jìn)行研究。UHMWPE性能見表1。由于UHMWPE導(dǎo)熱性能較差,所以與其嚙合的齒輪選用鋼材料。這樣導(dǎo)熱性好、摩損小,并能彌補(bǔ)工程塑料齒輪精度不高的缺點。2嚙合齒輪均為標(biāo)準(zhǔn)直齒圓柱齒輪,參數(shù)為:UHMWPE齒輪齒數(shù)30,鋼齒輪齒數(shù)20,模數(shù)4mm,齒寬20mm,壓力角取為20°。表1超高相對分子質(zhì)量聚乙烯性能3UHMWPE材料齒輪疲勞分析模型的建立齒輪在嚙合過程中,輪齒如同受線載荷的懸臂梁,齒根所受的彎矩最大,因此齒根處的彎曲疲勞強(qiáng)度最弱。當(dāng)輪齒在齒頂
6、處嚙合時,處于雙對齒嚙合區(qū),此時彎矩的力臂雖然最大,但力并不是最大,因此彎矩并不是最大。根據(jù)分析,齒根所受的最大彎矩發(fā)生在齒輪嚙合點位于單對齒嚙合區(qū)最高點時。因此,在建立UHMWPE材料齒輪疲勞分析模型時,應(yīng)該建立載荷作用于單對齒嚙合區(qū)最高點。由機(jī)械原理漸開線齒輪連續(xù)傳動條件分析方法,可以得出單對齒輪嚙合最高點。然后利用CAXA軟件的齒輪建模功能和數(shù)據(jù)轉(zhuǎn)換功能建立UHMWPE材料齒輪疲勞分析模型如圖3所示。圖3UHMWPE材料齒輪疲勞分析模型4利用ANSYS分析UHMWPE材料齒輪疲勞壽命ANSY
7、S是以有限元分析為基礎(chǔ)的大型通用CAE軟件,是世界上第一個通過IS09001認(rèn)可的有限元分析軟件。因此,通過準(zhǔn)確地建立模型、合理的網(wǎng)格劃分與載荷施加以及邊界條件設(shè)定,就能得到可靠性較好的計算結(jié)果。對于工程塑料齒輪,由于其材料的力學(xué)性能、熱性能等都與金屬材料有很大區(qū)別,其失效形式及失效機(jī)理與金屬齒輪也有很大區(qū)別。由于塑料齒輪的彈性模量較低,與鋼齒輪嚙合過程中其赫茲接觸區(qū)較大,接觸應(yīng)力較小,一般不會出現(xiàn)點蝕等表面失效,所以輪齒在彎曲應(yīng)力作用下疲勞斷裂或折斷是塑料齒輪的主要失效形式。因此主要對3種情況下
8、的UHMWPE材料齒輪的疲勞壽命進(jìn)行分析。4.1UHMWPE材料齒輪無缺陷情況的疲勞壽命分析在利用ANSYS進(jìn)行齒輪的疲勞分析前,需要對2嚙合齒輪進(jìn)行接觸分析。按照上文所分析的實際接觸情況,確定2齒輪單齒嚙合區(qū)域最高點位置,并定義接觸類型為柔體對柔體的面對面接觸。取鋼齒輪嚙合面為目標(biāo)面,用單元Targel69來定義,取UHMWPE材料齒輪嚙合面為接觸面,用單元Contal71來定??梢詮牟藛?MainMenu>Preprocessor>Modeling>Create>Contact