2013屆高考數(shù)學(xué)第一輪總復(fù)習(xí)34數(shù)列求和(第1課時)課件 文 (廣西專版).ppt

2013屆高考數(shù)學(xué)第一輪總復(fù)習(xí)34數(shù)列求和(第1課時)課件 文 (廣西專版).ppt

ID:55827437

大小:727.50 KB

頁數(shù):23頁

時間:2020-06-09

2013屆高考數(shù)學(xué)第一輪總復(fù)習(xí)34數(shù)列求和(第1課時)課件 文 (廣西專版).ppt_第1頁
2013屆高考數(shù)學(xué)第一輪總復(fù)習(xí)34數(shù)列求和(第1課時)課件 文 (廣西專版).ppt_第2頁
2013屆高考數(shù)學(xué)第一輪總復(fù)習(xí)34數(shù)列求和(第1課時)課件 文 (廣西專版).ppt_第3頁
2013屆高考數(shù)學(xué)第一輪總復(fù)習(xí)34數(shù)列求和(第1課時)課件 文 (廣西專版).ppt_第4頁
2013屆高考數(shù)學(xué)第一輪總復(fù)習(xí)34數(shù)列求和(第1課時)課件 文 (廣西專版).ppt_第5頁
資源描述:

《2013屆高考數(shù)學(xué)第一輪總復(fù)習(xí)34數(shù)列求和(第1課時)課件 文 (廣西專版).ppt》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。

1、第三章數(shù)列13.4數(shù)列求和考點(diǎn)搜索●常用求和公式●錯位相減法●倒序相加法●并項求和法●裂項求和法2高考猜想數(shù)列求和是對數(shù)列知識的精彩演繹,它幾乎涵蓋了數(shù)列中所有的思想、策略、方法、技巧,對學(xué)生的知識和思維都有很高的訓(xùn)練價值.考試時把求和作為大題的一個小問單列,或與極限相結(jié)合,考查數(shù)列的求和.3一、等差數(shù)列與等比數(shù)列的求和方法等差數(shù)列的前n項和公式是采用①_________推導(dǎo)的,等比數(shù)列的前n項和公式是采用②_____________推導(dǎo)的.二、常用求和公式(等差數(shù)列);倒序相加法錯位相減法4三、錯位相減法這是在推導(dǎo)等比數(shù)列的前n

2、項和公式時所用的方法,這種方法主要用于求數(shù)列{anbn}的前n項和,其中{an}、{bn}分別是等差數(shù)列和等比數(shù)列.四、倒序相加法將一個數(shù)列倒過來排列(倒序),當(dāng)它與原數(shù)列相加時,若有公因式可提,并且剩余的項的和易于求得,則這樣的數(shù)列可用倒序相加法求和.等差數(shù)列的求和公式就是用倒序相加法推導(dǎo)出來的.5五、分組求和法有一類數(shù)列,既不是等差數(shù)列,也不是等比數(shù)列.若將這類數(shù)列適當(dāng)拆開,可分為幾個等差、等比或常見的數(shù)列,即能分別求和,然后再合并.六、裂項法這是分解與組合思想在數(shù)列求和中的具體應(yīng)用.裂項法的實(shí)質(zhì)是將數(shù)列中的項分解,然后重新組

3、合,使之能消去一些項,最終達(dá)到求和的目的.6七、常見的拆項公式有:1.=③___________.2.=④_____________.3.=⑤__________________.4.=⑥___________.5.n·n!=⑦_(dá)____________.(n+1)!-n!7盤點(diǎn)指南:①倒序相加法;②錯位相減法;③;④;⑤;⑥;⑦(n+1)!-n!81.若數(shù)列1,1+2,1+2+22,1+2+22+23,…,1+2+22+…+2n-1,…的前n項和Sn>1020,那么n的最小值是()A.7B.8C.9D.10解:令an=1+2+2

4、2+…+2n-1=2n-1.則數(shù)列{an}的前n項和即為Sn,故Sn=2n+1-2-n,則2n+1-2-n>1020,解得n≥10.D92.二次函數(shù)y=n(n+1)x2-(2n+1)x+1,當(dāng)n依次取1,2,3,4,…,k,…時,圖象在x軸上截得的線段的長度的總和為()A.1B.2C.3D.4解:令y=0,則n(n+1)x2-(2n+1)x+1=0,得或則當(dāng)n取k時,圖象在x軸上截得的線段的長度所以所求線段的長度的總和為,故選A.A103.設(shè)Sn=1-2+3-4+…+(-1)n-1·n,則S17+S33+S50=()A.-1B.0

5、C.1D.2解:依題意,S17=1-2+3-4+…+17=9,S33=1-2+3-4+…+31-32+33=17,S50=1-2+3-4+…+49-50=-25,則S17+S33+S50=1,故選C.C111.求下面數(shù)列的前n項和:解:設(shè)前n項和為Sn,則題型1分組求和法第一課時12設(shè)當(dāng)a=1時,Tn=n;當(dāng)a≠1時,Tn=Cn=1+4+7+…+(3n-2)=所以,當(dāng)a=1時,Sn=Tn+Cn=當(dāng)a≠1時,Sn=Tn+Cn=13點(diǎn)評:如果求和數(shù)列中的通項公式有多項,就可以根據(jù)每項的結(jié)構(gòu)特點(diǎn)看成是幾個基本數(shù)列:如果n出現(xiàn)在指數(shù)的項就

6、可以看成是一個等比數(shù)列;如果一次項中出現(xiàn)n的,就可以把這個一次項(和常數(shù)項)一起看成是一個等差數(shù)列,然后分別求和,最后可得到所求式子的和式.14求數(shù)列1,a+a2,a2+a3+a4,a3+a4+a5+a6,…(a≠0)的前n項和Sn.解:據(jù)題設(shè)條件分析可知:an=an-1+an+an+1+…+a2n-2,當(dāng)a=1時,an=n,所以當(dāng)a≠1時,當(dāng)a≠±1時,當(dāng)a=-1時,152.求值:解:分a=1和a≠1兩種情況.當(dāng)a=1時,當(dāng)a≠1時,將上式兩邊同乘以,得兩式相減,得題型2錯位相減法求和16即綜上所述,得點(diǎn)評:若和式的項是一個等差

7、數(shù)列與一個等比數(shù)列的積的形式,就用錯位相減法求和.其步驟主要有:先在和式兩邊乘(或除)以等比數(shù)列的公比,然后兩式中有n-1項參與錯位相減,相減后這n-1項構(gòu)成一個新的等比數(shù)列,然后可求得其和.如果是含參數(shù)的等比數(shù)列,注意按公比是否為1進(jìn)行討論.17已知等比數(shù)列{an}的前n項和為Sn=a·2n+b,且a1=3.(1)求a、b的值及數(shù)列{an}的通項公式;(2)設(shè),數(shù)列{bn}的前n項和為Tn,證明:Tn<解:(1)當(dāng)n≥2時,an=Sn-Sn-1=2n-1·a.而{an}為等比數(shù)列,得a1=21-1·a=a.又a1=3,得a=3.

8、從而an=3·2n-1(n∈N*).又因?yàn)閍1=2a+b=3,所以b=-3.18(2)證明:因?yàn)樗詢墒较鄿p得則193.求下列各數(shù)列的前n項和Sn.(1)(2)解:(1)因?yàn)樗灶}型3裂項法求和20(2)因?yàn)樗渣c(diǎn)評:“裂項法”一般適用于分式型求和

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。