資源描述:
《《實數(shù)》題型分類歸納.docx》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、定義a的范圍表示性質(zhì)精品文檔《實數(shù)》知識點比較:算術(shù)平方根平方根立方根若正數(shù)x,x2a,若數(shù)x,x2a,若數(shù)x,x3a,正數(shù)x叫做a的算術(shù)數(shù)x叫做a的平方數(shù)x叫做a的立平方根,xa。根,xa方根,x3a。a0a0a是任意數(shù)a(根號a)a(正負根號3a(三次根號a)a)正數(shù)有一個算術(shù)平方正數(shù)有兩個平方根,正數(shù)有一個立方根,是正數(shù)它們互為相反數(shù)根,是正數(shù)0的算術(shù)平方根是00的平方根是00的立方根是0負數(shù)沒有算術(shù)平方根負數(shù)沒有平方根負數(shù)有一個立方根,是負數(shù)a03-a3aa雙重非負性0a2a3a3aa20)33aa(aa被開方數(shù)的小數(shù)點向被開方數(shù)小數(shù)點
2、向右(左)每移動兩位,右(左)每移動三算術(shù)平方根的小數(shù)點位,立方根的小數(shù)向右(左)移動一位。點向右(左)移動一位。類型一:求值例1、求下列各數(shù)的算術(shù)平方根。(1)100(2)49(3)19()0.0025()()2()-62641645067例2、求下列各數(shù)的平方根。(1)100(2)499()()()()-62(3)10.00250264164567。1歡迎下載精品文檔例3、求下列各數(shù)的立方根。(1)1000(2)8(3)210(4)0.001(5)0(6)2(7)2727-63類型二:化簡求值例1、求下列各式的值。(1)22=()-169(
3、)=2=30.0196256(4)-252-242=(5)-3-27=(6)37293512=例2、求下列各式的值22(2)0.00014(22(1)25-4(-2)10-6)0.2a0類型三:算術(shù)平方根的雙重非負性a0一、被開方數(shù)的非負性a0例1、下列各式中,有意義的有哪些?1-6-6(6)2-6aa2a2例2、若下列各式有意義,在后面橫線上寫出x的取值范圍。(1)x_________(2)5-x__________例3、若x、y都是實數(shù),且yx33x8,求x3y的立方根。二、算術(shù)平方根的非負性a0。2歡迎下載精品文檔例4、(1)a12的最小值
4、是______,此時a的取值是______。(2)2-a1的最大值是______,此時a的取值是______。例5、若2x1y30,求(x2y)的值。例6、已知2(2)233y2270(x2xy)的平方根。,求類型四、算術(shù)平方根:被開方數(shù)的小數(shù)點向右(左)每移動兩位,算術(shù)平方根的小數(shù)點向右(左)移動一位。立方根:被開方數(shù)的小數(shù)點向右(左)每移動三位,立方根的小數(shù)點向右(左)移動一位。例1、觀察:已知5.2172.284,521.722.84填空:0.05217______52170______例2、令2.361.536,23.64.858則①23
5、6_______;0.00236________②若x04858,x__________③若a1061536,求a的值。例3、若15a,337b,則0.15____,337000____。類型五、平方根的性質(zhì):正數(shù)有兩個平方根,它們互為相反數(shù)。例1、一個非負數(shù)的兩個平方根是2a1和a-5,這個非負數(shù)是多少?例2、已知一個數(shù)的兩個平方根分別是3a1和a11,求這個數(shù)的立方根類型六、解方程。。3歡迎下載精品文檔例1、求下列各式中的x的值:(1)x2;()2100;()(2250。)=19625x336x3(4)x364()8x312503()3)27
6、056(x類型七:的根指數(shù)是2,指數(shù)2常常省略不寫。3的根指數(shù)是3,指數(shù)3不可省略。例1、若2b15和3a-1都是5的平方根,則a____,b____。例2、已知Amnmn3是mn3的算術(shù)平方根,Bm2n2m2n是m2n的立方根,求BA的立方根。類型八、估值。例1、已知m,n為兩個連續(xù)的整數(shù),且m11n則mn=_______。例2、已知x,y為兩個連續(xù)的整數(shù),且x51y,則xy=_______。例3、估計68的立方根的大小在()A、2與3之間B、3與4之間C、4與5之間D、5與6之間例4、若5的整數(shù)部分是a,小數(shù)部分是b,則a(b5)的值是多少?
7、例5、若913與9-13的小數(shù)部分分別是a與b,試求4a3ba22a(a0);3a3a,3類型九:a,a3aa例1、下列判斷錯誤的是()。4歡迎下載精品文檔A、若ab,則abB、若3a3b,則abC、若3a33b3,則abD、若a2b2,則ab例2、如圖實數(shù)a、b對應(yīng)數(shù)軸上的點A和點B,化簡:a2b2(ab)2(ab)2a(a>0),提示:
8、a
9、=0(a=0),-a(a<0).ABa0ba2類型八、平方運算與開平方運算互為逆運算;a(a0)3a3立方運算與開立方運算互為逆運算。a例1、若x22,求2x5的算術(shù)平方根。例2、已知x-2的平方根是±
10、2,2xy7的立方根是3,求x2y2的算術(shù)平方根。類型九、3-a3a(被開方數(shù)互為相反數(shù),對應(yīng)的立方根也互為相反數(shù))例1、若31-2x與