《E ff ects of Ionic Strength and Ion Speci fi city on the Interface Behavior of Poly(dimethylaminoethyl methacrylate) ? Poly(lauryl metha》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
pubs.acs.org/LangmuirArticleE?ectsofIonicStrengthandIonSpeci?cityontheInterfaceBehaviorofPoly(dimethylaminoethylmethacrylate)?Poly(laurylmethacrylate)HongxuChen,GangyaoWen,*VarvaraChrysostomou,StergiosPispas,HongfeiLi,andZhaoyanSunCiteThis:Langmuir2021,37,2419?2425ReadOnlineACCESSMetrics&MoreArticleRecommendations*s?SupportingInformationABSTRACT:Theionspeci?citye?ectonthewatersolubilityofpoly(N-isopropylacrylamide)-containingcopolymerscomplieswiththeHofmeisterseries,whichisapplicabletoothercopolymersornotneedtobeexplored.Inthiswork,e?ectsofionicstrengthunderacidicconditionsandionspeci?cityunderalkalineconditionsontheair/waterinterfacebehavioroftwoamphiphilicdiblockcopolymerspoly-(dimethylaminoethylmethacrylate)?poly(laurylmethacrylate)(PDMAEMA-PLMA)weresystematicallystudied.Underacidicconditions,thesurfacepressure?areaisothermsofapredominantlyhydrophiliccopolymerareinsensitivetoionicstrength.Incontrast,theisothermsofapredominantlyhydrophobiccopolymersuccessivelyshifttothelarge,small,andlargemolecularareawiththeincreaseofionicstrength.Underalkalineconditions,theinterfacialstretchdegreesofPDMAEMAchainsoftwocopolymerschangewithsaltspeciesandconcentrations,whichdonotcomplywiththeHofmeisterseries.AlloftheLangmuir?Blodgett?lmsoftheformercopolymerexhibitseparatecircularmicelles.Nevertheless,thoseofthelattercopolymerobtainedunderalkalineconditionsexhibitvariousdistinctivemorphologiessuchasseparatecircularmicelles,largeseparatePLMAcoreswithinlargePDMAEMAdomains,andlargePLMAdomains/aggregatessurroundedbyshortPDMAEMAshells.ItcanbeattributedtothehighdeformabilityofPLMAchains,theionspeci?citye?ectonthestretchdegreeofPDMAEMAblocks,andtheirunderwatersolubilityuponcompression.■INTRODUCTIONstudiesonthee?ectofsaltspeciesonthepoly(N-isopropylacrylamide)(PNIPAM)-containingcopolymerThespeci?cnanoaggregatesofmanytypicalamphiphilicblock1?7monolayerswereperformedbasedontheHofmeisterDownloadedviaBUTLERUNIVonMay16,2021at10:51:51(UTC).copolymersincludingpolystyrene?poly(ethyleneoxide)26?288?11series.ThebrushlayerthicknessofPnBA-PNIPAMonpolystyrene?poly(methylmethacrylate)andpolystyr-???2612?16thewatersurfacewasrankedasF>Cl>Br,andtheene?poly(vinylpyridine)havebeenextensivelystudiedunderwatersolubilityofPNIPAMblocksinpoly(laurylattheair/waterinterface.Theyarepotentiallyapplicablein17?20acrylate)-poly(N-isopropylacrylamide)followedtheseriesmicroelectronics,biomaterials,andoptoelectronics.Var-27Seehttps://pubs.acs.org/sharingguidelinesforoptionsonhowtolegitimatelysharepublishedarticles.iouse?ectssuchascopolymercomposition,7spreadingNaSCN>NaNO3>H2O>NaCl≈Na2SO4.81014ItwasreportedthattheaveragepKavalueofthetertiaryconditions,andsubphasetemperature,andpHhave29aminegroupsofPDMAEMAwas~7.5at25°C,whichwerebeeninvestigatedbasedontheinterfacialaggregationbehaviorcompletely/partiallyprotonatedandunprotonatedwiththepHandthestructuresoftheLangmuir?Blodgett(LB)?lms.25,30,31increasein/onthewatersolutions/surface.OurrecentIn?uencesofionicstrengthandionspeci?cityonstimuli-workshowedthatalloftheLB?lmsofthepredominantlyresponsivepolymersonthewatersurfacewerealso21?28hydrophilicpoly(dimethylaminoethylmethacrylate)?poly-studied.Ourgroupstudiedlatelythee?ectofsubphase(laurylmethacrylate)(PDMAEMA-PLMA)exhibitedseparateionicstrengthontheLB?lmsofpoly(n-butylacrylate)?circularmicellesatdi?erentpH,whereasthoseofthepoly(acrylicacid)(PnBA-PAA)andobservedunexpectedpredominantlyhydrophobiccopolymermainlyexhibitedringlikenanostructuresunderalkalineconditionsandmoderate22ionicstrength.Theionicstrengthin?uenceontheinterfacebehaviorofpoly(benzylmethacrylate)?poly-Received:November29,2020(dimethylaminoethylmethacrylate)(PDMAEMA)wasstudiedRevised:January27,2021byClaroetal.24Theirresultsdemonstratedthatpolyelec-Published:February11,2021trolytebrushesshowedexpanded/coiledconformationsatlow/highionicstrengthsubphasesduetoelectrostaticrepulsionandelectrostaticscreening,respectively.Several?2021AmericanChemicalSocietyhttps://dx.doi.org/10.1021/acs.langmuir.0c034242419Langmuir2021,37,2419?2425
1Langmuirpubs.acs.org/LangmuirArticle32procedurethatwegave.12Afterkeeping20minatatransferwormlikeaggregates.Inthiswork,thein?uencesoftheionicstrengthontheinterfacebehavioroftheabovetwocondition,thesubstratewasverticallydraggedviathewatersurfaceatPDMAEMA-PLMAswerestudiedunderacidicconditions.2mm/min.Underacidicconditionswithalowionicstrengthof0.15mol/L,theLB?lmsoftwoPDMAEMA-PLMAswereobtainedat2Accordingtotheaboveliterature,itisknownthattheionmN/mwiththetransferratiosof~1.1.Furthermore,theinitialLBspeci?citye?ectonthePNIPAM-containingcopolymers?lmswereobtainedafterthesolventevaporationwithoutmonolayercomplieswiththeHofmeisterseries,butthatonthecompression.Underalkalineconditions,atlow/highconcentrationsPDMAEMA-containingonesisstilllacking.Toexplore(0.15/0.60mol/L)ofdi?erentsaltspecies,theLB?lmsoftwowhethertheHofmeisterseriesisapplicabletothissystem,PDMAEMA-PLMAswereobtainedat20mN/mwiththetransfertheionspeci?citye?ectontheinterfacebehaviorofratiosof1.5?2.4and1.1?1.9,respectively.Afterthetransfer,eachLBPDMAEMA-PLMAunderalkalineconditionswasalsostudied.?lmwasimmediatelyimmersedintoultrapurewaterfor10mintoOurinterestingresultsshowthelargeionicstrengthe?ectonremovethepossibledepositedsaltsontheSiwafer,whichmighttheisothermalsofthelattercopolymer,andtheionspeci?citydisturbitsmorphologycharacterizationlater.Theatomicforcemicroscopy(AFM)(AFM5100N)wasusedtoobtainthestructurese?ectdoesnotcomplywiththeHofmeisterseries.oftheLB?lmsinanenvironmentalsituation.ThemonolithicsiliconFurthermore,theLB?lmsofthelattercopolymerexhibitprobes(Multi75Al)with3N/mspringconstantand~1.00Vvariousdistinctivemorphologies.amplitudewereused.Thescanningspeedandsizewere1.0Hzand2■μm×2μm,respectively.EXPERIMENTALSECTIONMaterialsandReagents.TwoPDMAEMA-PLMAs(denotedas■RESULTSANDDISCUSSIONPDMAEMA77%-PLMAandPDMAEMA18%-PLMA)wereusedinIonicStrengthE?ectonIsotherms.Thecopolymerthisstudy,andtheirchemicalstructuresareshowninScheme1.TheirchainsexhibitrandomcoilsratherthanmicellesinthespreadingsolutionsbecausebothblocksarewellsolubleinScheme1.ChemicalStructureofPDMAEMA-PLMA32THF.Attheinterface,thecopolymerstendtoformsurfaceaggregates/micelleswithPLMAcoresandPDMAEMA32coronaswiththevolatilizationofsolvent.Figure1showsweight-averagemolecularweightsandthecontentsofhydrophilicPDMAEMAwere18000and21600g/moland77and18wt%,33respectively.The0.5mg/mLcopolymersolutionswereobtainedusingtetrahydrofuran(THF,high-performanceliquidchromatog-raphy(HPLC)).Ultrapurewater(18.2MΩ·cm)wasadjustedtopH3or10withH2SO4orNaOH,respectively.Underacidicconditions,theionicstrengths(I)ofthesubphasesolutionwithNaClandNa2SO4were0.15,0.30,and0.60mol/L.UnderalkalinesubphaseFigure1.π-mmAisothermsofPDMAEMA77%-PLMA(a,b)andconditions,theconcentrationsofNaCl,Na2SO4,NaSCN,andPDMAEMA18%-PLMA(c,d)underacidicconditions(pH3)withNaNO3were0.15,0.30,and0.60mol/L.Theanalyticalinorganicdi?erentionicstrengthsinthepresenceofNaCl(a,c)andNa2SO4reagentswereusedasreceived.salts(b,d).Theirisothermsunderacidicconditionsintheabsenceof32IsothermalandHysteresisMeasurements.Thesurfacesaltsarealsogiven.pressure?meanmoleculararea(π-mmA)isothermalmeasurementsoftwoPDMAEMA-PLMAswereperformedat20°CusingaKSVtheπ-mmAisothermsoftwoPDMAEMA-PLMAsunderacidicminitrough(Finland).Eachcopolymersolutionwasuniformly11conditionswithdi?erentionicstrengthsinthepresenceofdroppedonthewatersurfacewitha50μLsyringe.Thespreadingvolumeswereusually20μLexceptforthoseofPDMAEMA77%-NaClandNa2SO4salts.Forcomparison,theirisothermsunderPLMAunderalkalineconditionswith0.15mol/LNaCl(15μL),0.60acidicconditionsintheabsenceofsaltswereportedpreviously32mol/LNaSCN(18μL),and0.15and0.30mol/LNaNO3(15and19arealsoshown.ForPDMAEMA77%-PLMA,thesurfaceμL,respectively).Aftera20minperiodforthefullevaporationofpressureincreasesquicklyattheverysmallmmAatdi?erentTHF,eachinitialsurfacepressurewasbelow0.20mN/m.Finally,thesubphaseionicstrengths.Itscondensedisothermsalmostmonolayerwascompressedbythesymmetricalmovementoftwooverlap,indicatingtheweakelectrostaticrepulsionbetweenthebarriers(5mm/min),andeachisothermwasobtainedwithtwolongprotonatedPDMAEMAblocksunderwater.Furthermore,34almostoverlappedcurves.Duringthehysteresismeasurement,the2theonsetpressuresintheisothermsatdi?erentNa2SO4LangmuirmonolayerwascompressedtommAof5nmandconcentrationsareclosetothatwithoutsalts,whereasthosemaintainedfor30s,andthenthebarriersmovedtothestartpositions.intheNaClsituationsappearattheslightlylowermmAduetoLBFilmPreparation.Underdi?erentsaltconditions(20°C),thetheelectrostaticscreeninge?ect.LB?lmswereobtainedonthesiliconsubstrates,whichweretreatedForPDMAEMA18%-PLMA,theionicstrengthe?ectonitswiththemodi?edRadioCorporationofAmerica(RCA)cleaningisothermsismoreapparent.Table1showsthelimitingarea2420https://dx.doi.org/10.1021/acs.langmuir.0c03424Langmuir2021,37,2419?2425
2Langmuirpubs.acs.org/LangmuirArticleTable1.AValues(innm2)oftheIsothermsofblocksunderacidicconditions,thecompression/expansion0PDMAEMA18%-PLMAinFigure1isothermsofPDMAEMA77%-PLMAsuperposemostly.ThebehaviorissimilartothatunderacidicconditionswithoutsaltsI(mol/L)becausethein?uenceofionicstrengthisweakerthanthesalts0.150.300.60electrostaticrepulsionbetweenprotonatedPDMAEMANaCl17.99.313.0blocks.ForPDMAEMA18%-PLMA,especiallyatlowionicNa2SO415.87.79.6strength,asmallhysteresisphenomenonexistsintheonsetpressureandplateauregions.Thisisbecausetheinterface-adsorbedPDMAEMAblocksimmerseinwaterwith(A0)oftheisothermsofPDMAEMA18%-PLMAinFigure1.compression,anditisdi?cultforthemtocomebacktotheTheA0valuesweredeterminedbyextrapolatingtheregionsinterfacewithexpansion.3?7to0mN/m.ThecorrespondingAvalueis11nm2inthe0IonSpeci?cityE?ectonIsotherms.Figure3givesthe32absenceofsalts.Atlowionicstrength(0.15mol/L),theA0isothermsofPDMAEMA77%-PLMAunderalkalineconditionsvaluesofPDMAEMA18%-PLMAappearatlargemmA(>15nm2).Thisisbecausethestronglyhydratedanions(Cl?andSO2?)canpolarizethewatermolecules34surroundingthe4shortprotonatedPDMAEMAblocksandthusdestroytheirhydrogenbonds,resultingintheadsorptionofthelattertotheinterface.Uponcompression,anobviousplateauappearsat12mN/mcorrespondingtothePDMAEMAsubmergenceinwater,whichissimilartothatappearingunderalkaline32conditionswithoutsalts.Finally,thesurfacepressureincreasesagainbecauseofthecontactofthePLMAcores.Atthemoderateionicstrengthof0.30mol/L,theisothermsmovetosmallermmAcomparedwiththatwithoutsalts,mainlybecauseoftheelectrostaticscreeninge?ect.Atthehighionicstrengthof0.60mol/L,theisothermintheNaCl-containingsituationmovestothelargemmAagain,apparentlyduetothesalting-oute?ect.Incontrast,theisothermintheNa2SO4-containingsituationisclosetothatwithoutsalts,whichisbecauseoftheequilibrationbetweenthesalting-outandthebridginge?ects.Thelattere?ectcausestheshrinkageFigure3.π-mmAisothermsofPDMAEMA77%-PLMAunderalkalineofshortPDMAEMAchainsbyinteractionwiththedivalent2?conditions(pH10)withNaCl(a),Na2SO4(b),NaNO3(c),andSO4,whichissimilartothebridginge?ectsbetweenPAANaSCNsalts(d)atdi?erentsaltconcentrations(0.15?0.60mol/L).2+22blocksthroughBainourpreviousPnBA-PAAsystem.ItsisothermunderalkalineconditionintheabsenceofsaltsisalsoFigure2showsthehysteresiscurvesoftwoPDMAEMA-32given.PLMAsunderacidicconditionswithdi?erentionicstrengthsinthepresenceofNaClandNa2SO4salts.Duetothefactthatwithseveralsaltspeciesatdi?erentsaltconcentrations.Atlow/thecondensedmonolayerbehaviorsandcharacteristicsaremoderateconcentrations,theisothermsinthepresenceoftriggeredbytheunderwatersolubilityofthePDMAEMANaCl,NaNO3,andNaSCNexhibitlowpseudoplateaupressures(6?14mN/m),whichareunderthe28mN/mde?ectionpressureintheabsenceofsalts.Thismeansthattheadditionofthesesaltsisbene?cialtothestretchingofthePDMAEMAblocksandtheirimmersionintothesubphaseuponcompressionisfavored.ThisobservationisconsistentwithourpreviousresultswherePNIPAMblocksimmersein27thewatermoreeasilyduetothepresenceofNaSCN.Furthermore,thepseudoplateaupressureinthelowNaClconcentrationsituationislargerthanthatatmoderateconcentration,whilethecorrespondingisothermsinthepresenceofNaNO3andNaSCNoverlap.Comparedwiththebehaviorintheabsenceofsalts,theisothermsinthepresenceofNa2SO4demonstratethepresenceoflessexpandedmonolayers.Inparticular,theyexhibitaslowinitialriseandthenarapidriseinsurfacepressure,correspondingtoprogressiveimmersioninwaterforPDMAEMAblocksandthehydrophobicinteractionsamongPLMAcores,respectively.Athighconcentration,theisothermsinthesituationsoftheNaClsubphasesandalsoforothersaltsutilizeddemonstrateFigure2.HysteresiscurvesofPDMAEMA77%-PLMA(a,b)andPDMAEMA18%-PLMA(c,d)underacidicconditions(pH3)withthelessandthemoreexpandedmonolayers,respectively.di?erentionicstrengthsinthepresenceofNaCl(a,c)andNa2SO4Table2liststheA0valuesoftheisothermsinFigure3.The232salts(b,d).TheirhysteresiscurvesunderacidicconditionsinthecorrespondingA0valueis27nmintheabsenceofsalts.32absenceofsaltsarealsogiven.AccordingtoTable2,theorderofanionspeciesa?ectingthe2421https://dx.doi.org/10.1021/acs.langmuir.0c03424Langmuir2021,37,2419?2425
3Langmuirpubs.acs.org/LangmuirArticleTable2.AValues(innm2)oftheIsothermsinFigure3Table3liststheAvaluesoftheisothermsinFigure4.The00232correspondingA0valueis17nmintheabsenceofsalts.C(mol/L)salts0.150.300.60Table3.AValues(innm2)oftheIsothermsinFigure40NaCl47.945.139.1C(mol/L)Na2SO448.248.251.5NaNO344.243.437.7salts0.150.300.60NaSCN43.743.739.5NaCl24.725.136.0Na2SO430.535.044.3stretchingdegreesofPDMAEMAblocksareSO2?>Cl?>4NaNO327.330.037.4NO?>SCN?,SO2?>Cl?>SCN?>NO?,andSO2?>3434NaSCN26.729.940.8SCN?>Cl?>NO?atlow,moderate,andhigh3concentrations,respectively,inwhichonlythatatlowAccordingtoTable3,theordersofanionspeciesa?ectingtheconcentrationcomplywiththeHofmeisterseries.ThisisstretchingdegreesofPDMAEMAblocksareSO2?>NO?>43becausethesolubilityofPDMAEMAundersuchconditionsSCN?>Cl?andSO2?>SCN?>NO?>Cl?atlow/43showssmallchanges,whichisalsore?ectedontheisotherms.moderateandhighconcentrations,respectively,whichareFigure4showstheπ-mmAisothermsofPDMAEMA18%-di?erentfromtheHofmeisterseries.PLMAunderalkalineconditionswithdi?erentsaltsatdi?erentIonicStrengthIn?uenceontheLBFilms.FigureS1exhibitstheAFMtopographicalimagesoftheLB?lmsoftwoPDMAEMA-PLMAsobtainedunderacidicconditionswithout32saltsandwiththelowionicstrengthofNaClandNa2SO4.ThebrightdomainsarePLMAcores,andtheisolated32PDMAEMAcoronas/blocksarenotseen.AllLB?lmsoftwoPDMAEMA-PLMAsobtainedunderacidicconditionsinthepresenceofsaltsshowseparatemicelles.Thisisdi?erentfromtheassembliesofPDMAEMA18%-PLMAintheabsenceofsaltsexhibitingwormlikePLMAaggregates(panelsS1gandS1j).ThelatterobservationisascribabletothefactthattheadditionofsaltsdrivespartoftheshortprotonatedPDMAEMAblockstostayonthewatersurface,andthuspreventsthecontactofPLMAcores.IonSpeci?cityE?ectontheLBFilms.Underalkalineconditionswithdi?erentsalts,alloftheinitialLB?lmsofthetwocopolymersshowseparatecircularmicelles(notshown),32whichissimilartothosewithoutsalts.TheadditionofsaltsunderalkalineconditionsmakesPDMAEMAblocksmoreFigure4.π-mmAisothermsofPDMAEMA18%-PLMAunderalkalinestretched(seeFigures3and4).FiguresS2and5showtheconditions(pH10)withNaCl(a),Na2SO4(b),NaNO3(c),andAFMtopographicalimagesoftheLB?lmsofPDMAEMA77%-NaSCNsalts(d)atdi?erentsaltconcentrations(0.15?0.60mol/L).PLMAandPDMAEMA18%-PLMAobtainedat20mN/mItsisothermunderalkalineconditionintheabsenceofsaltsisalsounderalkalineconditionswithdi?erentsaltsandconcen-32given.trations,respectively.InFigureS2,allLB?lmsofPDMAEMA77%-PLMAstillshowseparatemicelleswithconcentrations.InFigure4,theisothermsofPDMAEMA18%-monolayercompressionduetothehindranceofthelongPLMAinthepresenceofsaltsappearatlargermmAthanthatPDMAEMAchains.withoutsaltsandmovetolargermmAwhenthesaltFromFigure5,theLB?lmsofPDMAEMA18%-PLMAconcentrationincreasesbecauseofthegraduallyincreasedobtainedathighpressureexhibitquitedistinctivemorpholo-stretchdegreeofPDMAEMAblocks,showingthesimilargies,whichshouldbeattributedtothehighdeformabilityof22e?ectoftheNaClconcentrationonthePnBA-PAAsystem.PLMAchains,theionspeci?citye?ectonthestretchdegreeofTheonsetsurfacepressureinmostoftheisothermsrisesPDMAEMAblocks,andtheirunderwatersolubilityuponsteeplyduetosigni?cantstericrepulsionbetweenthecompression.Atlowsaltconcentration,theLB?lmsobtainedPDMAEMAchains,whosemobilityisrestrictedbytheinthepresenceofNaClandNa2SO4(panels5aand5b)showPLMAcores.Uponcompression,thenonprotonatedPDMAE-largePLMAdomainswithaveragediametersof103±22andMAblocksareimmersedintothesubphase,showingan120±10nm,respectively.Somerelativelylargeluminousdotsobviouspseudoplateau.Itisworthnotingthattheinpanels5a,5e,and5farePLMAmulticoresduetotheirpseudoplateaupressuresgraduallyriseatmmA=20nm2possiblecoalescence.Furthermore,the~45nmthickwiththeincreaseoftheNaSCNconcentration(paneld),PDMAEMAshellsinthelattercasecanbeobservedduetowhichisdi?erentfromthosewithsimilarvaluesatthetheirraisedandenrichedregionsinaclosed-packedstructure,increasedmmAinothersalt-containingsituations.Uponwhichisdi?erentfromtheiraboveunobservablecoronas.Withfurthercompression,surfacepressuregraduallyincreasesintheimmersionoftheattachedPDMAEMAchainsuponeachisotherm,whichisduetothedirectcontactofthePLMAcompression,PLMAdomainsareformedbycoalescingofthecores.Duringthe?nalcompressionstageinthesituationofneighboringcores,whichispossibleduetothehighhighNa2SO4concentration,thesecondpseudoplateauappearsdeformabilityofPLMAchains,asisindicatedbythelow3235at~45mN/mduetothecopolymermonolayercollapse.bulkglasstransitiontemperatureofPLMA(?53°C).The2422https://dx.doi.org/10.1021/acs.langmuir.0c03424Langmuir2021,37,2419?2425
4Langmuirpubs.acs.org/LangmuirArticleFigure5.AFMtopographicalimagesoftheLB?lmsofPDMAEMA18%-PLMAobtainedat20mN/munderalkalineconditionswithdi?erentsaltkindsandconcentrations.ThesaltsareNaCl(a,e),Na2SO4(b,f),NaNO3(c,g),andNaSCN(d,h).Concentrationsare0.15(a?d)and0.6mol/L(e?h).Theimagesaregivenin1×1μm2.LB?lmobtainedintheNaNO3-containingsituationexhibitsstrengthsalmostoverlapbecausethecopolymercompositionlargePDMAEMAdomainscontainingsomecoalescentPLMAprovideselectrostaticrepulsionindependentofsalts.Incoreswhoseaveragediameteris36±3nm(panel5c),contrast,thoseofPDMAEMA18%-PLMAsuccessivelyshiftwhereasthatintheNaSCN-containingsituationexhibitslargetolarge,small,andlargemmAmainlywiththeincreaseinionicPLMAaggregatesof41±4nmsurroundedbythe~20nmstrengthduetothein?uencesofthehydratedstructurethickPDMAEMAshells(panel5d).Theadditionofthedestruction,electrostaticscreening,andsaltingoutontheparticularsaltsisconduciveforPDMAEMAblockstoimmerseshortPDMAEMAblocks,respectively.Underalkalineintothesubphaseuponcompression,resultingintheirconditions,theisothermsoftwoPDMAEMA-PLMAsvaryincreasedunderwatersolubilityandtheinterfacialcoalescencewiththechemicalnatureandconcentrationofthesaltsofmanyPLMAcores.Furthermore,thePDMAEMAchainsinutilized,whichhardlycomplieswiththeHofmeisterseriesontheformertwocasesmostlyimmerseintowater(beneathand26?28aroundthePLMAdomains)abovethepseudoplateauthePNIPAM-containingcopolymers.Underdi?erentpressure,whilethoseinthelattertwocasesarepartiallyconditions,allLB?lmsofPDMAEMA77%-PLMAshowadsorbedattheinterfacehinderingfurthercoalescenceoftheseparatecircularmicelles.ForPDMAEMA18%-PLMA,itsLBPLMAcoreswithinthepseudoplateauregions(seeFigure4).?lmsobtainedunderacidicconditionswithlowionicstrengthAthighsaltconcentration,theLB?lmsofPDMAEMA18%-showseparatecircularmicelles,beingdi?erentfromthosePLMAobtainedintheNaClandNaSOsituationsexhibit3224withoutsaltsexhibitingwormlikeaggregates.Moreover,thelargePDMAEMAdomainswithlargeseparatePLMAcoresLB?lmsobtainedatalkalineconditionsexhibitquitedistinct(38±4and31±3nm,respectively)duetothelocallysupramolecularmorphologiesdependingonionspeci?cities,enrichedshortPDMAEMAchains,probablybeingcompressedsuchastheseparatemicelles,thelargeseparatePLMAcoresintospaceamonglargePLMAcores.TheLB?lmsinthewithinlargePDMAEMAdomains,andthelargePLMANaNO3andNaSCNsituationsbothshowtheseparatecirculardomains/aggregatessurroundedbyshortPDMAEMAshells.micelleswithcorediametersof30±1and31±1nm,respectively.ThisisconsistentwiththenotionthatmostPDMAEMAchainsstilladsorbattheinterface,especiallyfor■ASSOCIATEDCONTENTthe?nalcasetransferredbelowthepseudoplateauregion,and*s?SupportingInformationthusthePLMAcoresdonotaggregatefurther.TheSupportingInformationisavailablefreeofchargeat■https://pubs.acs.org/doi/10.1021/acs.langmuir.0c03424.CONCLUSIONSLB?lmAFMtopographicimagesoftwoPDMAEMA-Thee?ectsofcopolymercomposition,subphaseionicstrength,PLMAsobtainedunderacidicconditionswithlowionicandionspeci?cityontheinterfacebehavioroftwostrengthandthoseofPDMAEMA77%-PLMAobtainedPDMAEMA-PLMAswerestudied.TheisothermsofPDMAE-underalkalineconditionsat20mN/m(PDF)MA77%-PLMAunderacidicconditionswithdi?erentionic2423https://dx.doi.org/10.1021/acs.langmuir.0c03424Langmuir2021,37,2419?2425
5Langmuirpubs.acs.org/LangmuirArticle■(7)Glagola,C.P.;Miceli,L.M.;Milchak,M.A.;Halle,E.H.;AUTHORINFORMATIONLogan,J.L.Polystyrene-Poly(ethyleneoxide)DiblockCopolymer:CorrespondingAuthorTheEffectofPolystyreneandSpreadingConcentrationattheAir/GangyaoWen?SchoolofMaterialScienceandEngineering,WaterInterface.Langmuir2012,28,5048?5058.HarbinUniversityofScienceandTechnology,Harbin(8)LiDestri,G.;Gasperini,A.A.M.;Konovalov,O.TheLink150040,China;orcid.org/0000-0003-1025-8147;BetweenSelf-AssemblyandMolecularConformationofAmphiphilicEmail:gywen@hrbust.edu.cnBlockCopolymersMonolayersattheAir/WaterInterface:TheSpreadingParameter.Langmuir2015,31,8856?8864.Authors(9)Wu,T.;Wen,G.;Huang,C.DewettingbehaviorofLangmuir?HongxuChen?SchoolofMaterialScienceandEngineering,Blodgettfilmsofpolystyrene-b-poly(methylmethacrylate)inducedbyHarbinUniversityofScienceandTechnology,Harbinsolventvaporannealing.J.Polym.Sci.,PartB:Polym.Phys.2016,54,150040,China825?830.VarvaraChrysostomou?TheoreticalandPhysicalChemistry(10)Seo,Y.;Cho,C.Y.;Hwangbo,M.;Choi,H.J.;Hong,S.M.Institute,NationalHellenicResearchFoundation,AthensEffectofTemperatureontheInterfacialBehaviorofaPolystyrene-b-11635,GreecePoly(methylmethacrylate)DiblockCopolymerattheAir/WaterInterface.Langmuir2008,24,2381?2386.StergiosPispas?TheoreticalandPhysicalChemistry(11)Gao,M.;Wen,G.;Wang,L.EffectsofSpreadingConditionsonInstitute,NationalHellenicResearchFoundation,AthenstheAggregationBehaviorofaSymmetricDiblockCopolymer11635,Greece;orcid.org/0000-0002-5347-7430Polystyrene-block-poly(methylmethacrylate)attheAir/WaterInter-HongfeiLi?StateKeyLaboratoryofPolymerPhysicsandface.Langmuir2018,34,9272?9278.Chemistry,ChangchunInstituteofAppliedChemistry,(12)Wen,G.NetworkStructureControlofBinaryMixedLangmuirChineseAcademyofSciences,Changchun130022,ChinaMonolayersofHomo-PSandPS-b-P2VP.J.Phys.Chem.B2010,114,ZhaoyanSun?StateKeyLaboratoryofPolymerPhysicsand3827?3832.Chemistry,ChangchunInstituteofAppliedChemistry,(13)Wen,G.;Chung,B.;Chang,T.EffectofspreadingsolventsonChineseAcademyofSciences,Changchun130022,China;LangmuirmonolayersandLangmuir?BlodgettfilmsofPS-b-P2VP.orcid.org/0000-0002-6357-3039Polymer2006,47,8575?8582.(14)Chung,B.;Choi,M.;Ree,M.;Jung,J.C.;Zin,W.C.;Chang,T.Completecontactinformationisavailableat:SubphasepHEffectonSurfaceMicelleofPolystyrene-b-poly(2-https://pubs.acs.org/10.1021/acs.langmuir.0c03424vinylpyridine)DiblockCopolymersattheAir?WaterInterface.Macromolecules2006,39,684?689.Notes(15)Perepichka,I.I.;Lu,Q.;Badia,A.;Bazuin,C.G.UnderstandingTheauthorsdeclarenocompeting?nancialinterest.andControllingMorphologyFormationinLangmuir-BlodgettBlockCopolymerFilmsUsingPS-P4VPandPS-P4VP/PDP.Langmuir■2013,29,4502?4519.ACKNOWLEDGMENTS(16)Zhu,J.;Lennox,R.B.;Eisenberg,A.InterfacialBehaviorofThisworkwassupportedbytheNaturalScienceFundofBlockPolyelectrolytes.2.AggregationNumbersofSurfaceMicelles.HeilongjiangProvince(no.LH2020B014)andtheOpenLangmuir1991,7,1579?1584.ResearchFundofStateKeyLaboratoryofPolymerPhysics(17)Aizawa,M.;Buriak,J.M.BlockCopolymerTemplatedandChemistry,ChangchunInstituteofAppliedChemistry,ChemistryfortheFormationofMetallicNanoparticleArraysonChineseAcademyofSciences.SemiconductorSurfaces.Chem.Mater.2007,19,5090?5101.(18)Ikada,Y.SurfaceModificationofPolymersforMedical■Applications.Biomaterials1994,15,725?736.REFERENCES(19)Ghrera,A.S.;Pandey,M.K.;Malhotra,B.D.Quantumdot(1)GoncalvesdaSilva,A.M.;Filipe,E.J.M.;d?’Oliveira,J.M.R.;monolayerforsurfaceplasmonresonancesignalenhancementandMartinho,J.M.G.InterfacialBehaviorofPoly(styrene)?Poly-DNAhybridizationdetection.Biosens.Bioelectron.2016,80,477?482.(ethyleneoxide)DiblockCopolymerMonolayersattheAir?Water(20)Harirchian-Saei,S.;Wang,M.C.P.;Gates,B.D.;Moffitt,M.G.Interface.HydrophilicBlockChainLengthandTemperaturePatterningBlockCopolymerAggregatesviaLangmuir?BlodgettInfluence.Langmuir1996,12,6547?6553.TransfertoMicrocontact-PrintedSubstrates.Langmuir2010,26,(2)GoncalvesdaSilva,A.M.;Simo??esGamboa,A.L.;Martinho,J.5998?6008.M.G.AggregationofPolystyrene-Poly(ethyleneoxide)Diblock(21)Wang,X.;Ma,X.;Zang,D.AggregationBehaviorofCopolymerMonolayersattheAir?WaterInterface.Langmuir1998,Polystyrene-b-Poly(acrylicacid)attheAir-WaterInterface.Soft14,5327?5330.Matter2013,9,443?453.(3)Cox,J.K.;Yu,K.;Constantine,B.;Eisenberg,A.;Lennox,R.B.(22)Wang,Y.;Wen,G.;Pispas,S.;Yang,S.;You,K.EffectsofPolystyrene?Poly(ethyleneoxide)DiblockCopolymersFormWell-subphasepH,temperatureandionicstrengthontheaggregationDefinedSurfaceAggregatesattheAir/WaterInterface.Langmuir1999,15,7714?7718.behaviorofPnBA-b-PAAattheair/waterinterface.J.ColloidInterface(4)Cheyne,R.B.;Moffitt,M.G.NovelTwo-Dimensional“RingSci.2018,512,862?870.andChain”MorphologiesinLangmuir?BlodgettMonolayersofPS-(23)Yang,S.;Wen,G.;Pispas,S.;You,K.Effectsofspreadingandb-PEOBlockCopolymers:EffectofSpreadingSolutionConcen-subphaseconditionsontheinterfacialbehaviorofanamphiphilictrationonSelf-AssemblyattheAir?WaterInterface.Langmuir2005,copolymerpoly(n-butylacrylate)-b-poly(acrylicacid).Polymer2019,21,5453?5460.172,66?74.(5)Cheyne,R.B.;Moffitt,M.G.Self-AssemblyofPolystyrene-block-(24)dosSantosClaro,P.C.;Coustet,M.E.;Diaz,C.;Maza,E.;Poly(ethyleneoxide)CopolymersattheAir?WaterInterface:IsCortizo,M.S.;Requejo,F.G.;Pietrasanta,L.I.;Ceolín,M.;Azzaroni,DewettingtheGenesisofSurfaceAggregateFormation?LangmuirO.Self-assemblyofPBzMA-b-PDMAEMAdiblockcopolymerfilmsat2006,22,8387?8396.theair?waterinterfaceanddepositiononsolidsubstratesvia(6)deVos,W.M.;deKeizer,A.;Kleijn,J.M.;CohenStuart,M.A.Langmuir?Blodgetttransfer.SoftMatter2013,9,10899?10912.TheProductionofPEOPolymerBrushesviaLangmuir-Blodgettand(25)Sprouse,D.;Jiang,Y.;Laaser,J.E.;Lodge,T.P.;Reineke,T.M.Langmuir-SchaefferMethods:IncompleteTransferandItsCon-TuningCationicBlockCopolymerMicelleSizebypHandIonicsequences.Langmuir2009,25,4490?4497.Strength.Biomacromolecules2016,17,2849?2859.2424https://dx.doi.org/10.1021/acs.langmuir.0c03424Langmuir2021,37,2419?2425
6Langmuirpubs.acs.org/LangmuirArticle(26)Matsuoka,H.;Uda,K.NanostructureofPoly(N-isopropyla-crylamide)BrushattheAir/WaterInterfaceandItsResponsivitytoTemperatureandSalt.Langmuir2016,32,8383?8391.(27)You,K.;Wen,G.;Skandalis,A.;Pispas,S.;Yang,S.AnionSpecificityEffectsontheInterfacialAggregationBehaviorofPoly(laurylacrylate)-block-poly(N-isopropylacrylamide).Langmuir2019,35,9904?9911.(28)Llamas,S.;Mendoza,A.J.;Guzman,E.;Ortega,F.;Rubio,R.?G.Salteffectsontheair/solutioninterfacialpropertiesofPEO-containingcopolymers:Equilibrium,adsorptionkineticsandsurfacerheologicalbehavior.J.ColloidInterfaceSci.2013,400,49?58.(29)vandeWetering,P.;Zuidam,N.J.;vanSteenbergen,M.J.;vanderHouwen,O.A.G.J.;Underberg,W.J.M.;Hennink,W.E.AMechanisticStudyoftheHydrolyticStabilityofPoly(2-(dimethylamino)ethylmethacrylate).Macromolecules1998,31,8063?8068.(30)Rehfeldt,F.;Steitz,R.;Armes,S.P.;vonKlitzing,R.;Gast,A.P.;Tanaka,M.ReversibleActivationofDiblockCopolymerMonolayersattheInterfacebypHModulation,1:LateralChainDensityandConformation.J.Phys.Chem.B2006,110,9171?9176.(31)Lee,H.;Son,S.H.;Sharma,R.;Won,Y.-Y.ADiscussionofthepH-DependentProtonationBehaviorsofPoly(2-(dimethylamino)-ethylmethacrylate)(PDMAEMA)andPoly(ethylenimine-ran-2-ethyl-2-oxazoline)(P(EI-r-EOz)).J.Phys.Chem.B2011,115,844?860.(32)Chen,H.;Wen,G.;Chrysostomou,V.;Pispas,S.;Pan,W.;Zuo,J.;Li,M.;Li,H.;Sun,Z.EffectsofCopolymerCompositionandSubphasepH/TemperatureontheInterfacialAggregationBehaviorofPoly(2-(dimethylamino)ethylmethacrylate)-block-poly(laurylmetha-crylate).J.Phys.Chem.C2020,124,4563?4570.(33)Chrysostomou,V.;Pispas,S.Stimuli-ResponsiveAmphiphilicPDMAEMA-b-PLMACopolymersandtheirCationicandZwitter-ionicAnalogs.J.Polym.Sci.,PartA:Polym.Chem.2018,56,598?610.(34)You,K.;Wen,G.;Skandalis,A.;Pispas,S.;Yang,S.;Li,H.;Sun,Z.EffectsofSubphasepHandTemperatureontheAggregationBehaviorofaPoly(laurylacrylate)-block-Poly(N-isopropylacryla-mide)CopolymerattheAir/WaterInterface.J.Phys.Chem.C2019,123,10435?10442.(35)Demetriou,M.;Krasia-Christoforou,T.SynthesisandCharacterizationofWell-DefinedBlockandStatisticalCopolymersBasedonLaurylMethacrylateand2-(Acetoacetoxy)ethylmethacry-lateUsingRAFT-ControlledRadicalPolymerization.J.Polym.Sci.,PartA:Polym.Chem.2008,46,5442?5451.2425https://dx.doi.org/10.1021/acs.langmuir.0c03424Langmuir2021,37,2419?2425
此文檔下載收益歸作者所有