基于svm的智能天線算法分析

基于svm的智能天線算法分析

ID:33009651

大小:2.43 MB

頁數(shù):130頁

時間:2019-02-19

基于svm的智能天線算法分析_第1頁
基于svm的智能天線算法分析_第2頁
基于svm的智能天線算法分析_第3頁
基于svm的智能天線算法分析_第4頁
基于svm的智能天線算法分析_第5頁
資源描述:

《基于svm的智能天線算法分析》由會員上傳分享,免費在線閱讀,更多相關內(nèi)容在行業(yè)資料-天天文庫。

1、重慶郵電大學碩士論文AbstractSmartantennatechnologyisoneofkeytechnologiesinTD—SCDMAcommunicationsystemandtheresearchfocusincommunicationstechnologycurrently.SmartantennacansuppressinterferencesignalsbybeamformingandthustoimprovetheoutputSINRandcommunicationsystemcapacity.Therefore,Researchi

2、ngonthesmartantennaalgorithmissignificantandhasimportantpracticalvalue.SupportVectorMachine(SVM)isthelatestmachinelearningresearch,itonlytakesasmallamountofsampletobetestedonthesamedistributionofthesampleandhasgoodgeneralizationability,butalsodealwithhighdimensional,nonlineardata

3、andglobalconvergenceadvantages.Supportvectormachineshavebeenwidelyappliedtovariousareaofresearch,hasbecomeanewmethodinwirelesscommunicationsignalprocessing.Inthispaper,supportvectormachinesasasignalprocessingtoolapplytoresearchthesmartantennaalgorithm.Themainworkandinnovationofth

4、ispaperincludethat:Firstly,thepapergivesageneraloverviewofthebasicprinciplesofsmartantennaandclassicalalgorithmsofbeamformingandDOAestimation.VCdimensionandgeneralizationoftheVCboundary,lossfunctioninstructuralriskandsupportvectormachinesareincluded.Throughcomputersimulation,supe

5、riorcharacteristicsofclassificationinsupportvectormachineandfittingperformanceinsupportvectormachineregressionintwo-dimensionaldataarebeingshown.Secondly,itextendedsupportvectormachinestothecomplexplaneSOthatcanhandlethecomplexsignalfortheapplicationofsupportvectormachineinbeamfo

6、rmingandDOAestimationworkswellthecushion.Theoptimumbeamformerweightstranslateintosolvingapproximatelinearclassificationproblemsdealingwithsupportvectormachine.EstablishedbeamformerbytheLSVMandNSVMbasedonsupportvectormachines.Bysimulationanalysis,theresultsshowthat,Comparedwiththe

7、traditionalalgorithm,LSVMandNSVMusedinbeamformingalgorithmshasfasterconvergence,higherofoutputSINR,especiallyinthecaseofoverload.TheNSVMshowedbettershapingthantheLSVM,butslightlyhighercomplexity.Thirdly,solvingcoefficientsoftheARmodelbyusingtheSVMandgetthesignalspectrumofthedirec

8、tionofthemodel,adjustingtheparameterscan

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。