資源描述:
《基于svm的智能天線算法分析》由會員上傳分享,免費在線閱讀,更多相關內(nèi)容在行業(yè)資料-天天文庫。
1、重慶郵電大學碩士論文AbstractSmartantennatechnologyisoneofkeytechnologiesinTD—SCDMAcommunicationsystemandtheresearchfocusincommunicationstechnologycurrently.SmartantennacansuppressinterferencesignalsbybeamformingandthustoimprovetheoutputSINRandcommunicationsystemcapacity.Therefore,Researchi
2、ngonthesmartantennaalgorithmissignificantandhasimportantpracticalvalue.SupportVectorMachine(SVM)isthelatestmachinelearningresearch,itonlytakesasmallamountofsampletobetestedonthesamedistributionofthesampleandhasgoodgeneralizationability,butalsodealwithhighdimensional,nonlineardata
3、andglobalconvergenceadvantages.Supportvectormachineshavebeenwidelyappliedtovariousareaofresearch,hasbecomeanewmethodinwirelesscommunicationsignalprocessing.Inthispaper,supportvectormachinesasasignalprocessingtoolapplytoresearchthesmartantennaalgorithm.Themainworkandinnovationofth
4、ispaperincludethat:Firstly,thepapergivesageneraloverviewofthebasicprinciplesofsmartantennaandclassicalalgorithmsofbeamformingandDOAestimation.VCdimensionandgeneralizationoftheVCboundary,lossfunctioninstructuralriskandsupportvectormachinesareincluded.Throughcomputersimulation,supe
5、riorcharacteristicsofclassificationinsupportvectormachineandfittingperformanceinsupportvectormachineregressionintwo-dimensionaldataarebeingshown.Secondly,itextendedsupportvectormachinestothecomplexplaneSOthatcanhandlethecomplexsignalfortheapplicationofsupportvectormachineinbeamfo
6、rmingandDOAestimationworkswellthecushion.Theoptimumbeamformerweightstranslateintosolvingapproximatelinearclassificationproblemsdealingwithsupportvectormachine.EstablishedbeamformerbytheLSVMandNSVMbasedonsupportvectormachines.Bysimulationanalysis,theresultsshowthat,Comparedwiththe
7、traditionalalgorithm,LSVMandNSVMusedinbeamformingalgorithmshasfasterconvergence,higherofoutputSINR,especiallyinthecaseofoverload.TheNSVMshowedbettershapingthantheLSVM,butslightlyhighercomplexity.Thirdly,solvingcoefficientsoftheARmodelbyusingtheSVMandgetthesignalspectrumofthedirec
8、tionofthemodel,adjustingtheparameterscan