On-line Optimization of Sequential Monte Carlo Methods

On-line Optimization of Sequential Monte Carlo Methods

ID:39719077

大小:437.46 KB

頁(yè)數(shù):6頁(yè)

時(shí)間:2019-07-10

On-line Optimization of Sequential Monte Carlo Methods _第1頁(yè)
On-line Optimization of Sequential Monte Carlo Methods _第2頁(yè)
On-line Optimization of Sequential Monte Carlo Methods _第3頁(yè)
On-line Optimization of Sequential Monte Carlo Methods _第4頁(yè)
On-line Optimization of Sequential Monte Carlo Methods _第5頁(yè)
資源描述:

《On-line Optimization of Sequential Monte Carlo Methods 》由會(huì)員上傳分享,免費(fèi)在線(xiàn)閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。

1、ProceedingsoftheAmericanControlConferenceAnchorage,AKMay8-10.2002On-lineOptimizationofSequentialMonteCarloMethodsusingStochasticApproximationArnaudDoucet’,VladislavB.TadiCDepartmentofElectricalandElectronicEngineering,TheUniversityofMelbourne,Parkville,Victoria3052,Australia.Email:{a.doucet,

2、v.tadic}Qee.mu.oz.auAbstractderweakassumptions,itcanbetypicallyshownthatthesealgorithmsconvergeinacertainsensetowardstheSequentialMonteCarlo(SMC)methodsakaParticleposteriorprobabilitydistributionsofinterestasymp-ateringtechniquesareasetofpowerfulandversatiletoticallyinthenumberofparticles[5]

3、,[SI.However,simulation-basedmethodstoperformoptimalstatees-theperformanceofSMCalgorithmsdependsheavilyontimationinnon-linearnon-Gaussianstatespacemodelsthevariousparametersofthealgorithms.Considerfor[SI.Inthisapproach,theposteriorprobabilitydistri-exampletheclassofSequentialImportanceSampli

4、ngbutionsofinterestareestimatedusingacloudofran-Resampling(SISR)algorithms[7].Currentalgorithmsdomsampleswhicharecarriedovertimeusingimpor-aretypicallydesignedsoastooptimizesome“l(fā)ocal”tancesamplingandresamplingtechniques.Currental-criteriasuchastheconditionalvarianceoftheimpor-gorithmsaretyp

5、icallydesignedsoastooptimizesometanceweightsintheimportancesamplingsteporthe“l(fā)ocal1’criteriasuchastheconditionalvarianceoftheconditionalvarianceofthenumberofoffspringintheimportanceweightsintheimportancesamplingstep.resamplingstep.However,theeffectoftheselocalopti-However,theeffectoftheseloc

6、aloptimizationsisnotmizationsisnotclearontheglobalperformanceoftheclearontheglobalperformanceofthealgorithm;e.g.algorithm.Forexample,samplingwithanon-locally.samplingwithanon-locallyoptimalimportancedistri-optimalimportancedistributionatagiventimecouldbutionmightbebeneficialatfurthertimestep

7、s.Webebeneficialatfurthertimesteps.Soevenifoptimiz-presenthereanaltemativeprincipledapproachwhereing“l(fā)ocal”criteriaissensible,onewouldpreferinap-theSMCisparametrizedanditsparametersoptimizedplicationstodesignanalgorithmoptimizinga“global”withrespec

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫(huà)的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問(wèn)題,請(qǐng)放心下載。
2. 本文檔由用戶(hù)上傳,版權(quán)歸屬用戶(hù),天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶(hù)請(qǐng)聯(lián)系客服處理。