2.2 Understanding and Visualizing Convolutional Neural Networks

2.2 Understanding and Visualizing Convolutional Neural Networks

ID:40703532

大?。?90.14 KB

頁數:9頁

時間:2019-08-06

2.2 Understanding and Visualizing Convolutional Neural Networks_第1頁
2.2 Understanding and Visualizing Convolutional Neural Networks_第2頁
2.2 Understanding and Visualizing Convolutional Neural Networks_第3頁
2.2 Understanding and Visualizing Convolutional Neural Networks_第4頁
2.2 Understanding and Visualizing Convolutional Neural Networks_第5頁
資源描述:

《2.2 Understanding and Visualizing Convolutional Neural Networks》由會員上傳分享,免費在線閱讀,更多相關內容在學術論文-天天文庫。

1、CS231nConvolutionalNeuralNetworksforVisualRecognition(thispageiscurrentlyindraftform)VisualizingwhatConvNetslearnSeveralapproachesforunderstandingandvisualizingConvolutionalNetworkshavebeendevelopedintheliterature,partlyasaresponsethecommoncriticismthatthelearn

2、edfeaturesinaNeuralNetworkarenotinterpretable.Inthissectionwebrieflysurveysomeoftheseapproachesandrelatedwork.Visualizingtheactivationsandfirst-layerweightsLayerActivations.Themoststraight-forwardvisualizationtechniqueistoshowtheactivationsofthenetworkduringthe

3、forwardpass.ForReLUnetworks,theactivationsusuallystartoutlookingrelativelyblobbyanddense,butasthetrainingprogressestheactivationsusuallybecomemoresparseandlocalized.Onedangerouspitfallthatcanbeeasilynoticedwiththisvisualizationisthatsomeactivationmapsmaybeallze

4、roformanydifferentinputs,whichcanindicatedeadfilters,andcanbeasymptomofhighlearningrates.Typical-lookingactivationsonthefirstCONVlayer(left),andthe5thCONVlayer(right)ofatrainedAlexNetlookingatapictureofacat.Everyboxshowsanactivationmapcorrespondingtosomefilter.

5、Noticethattheactivationsaresparse(mostvaluesarezero,inthisvisualizationshowninblack)andmostlylocal.Conv/FCFilters.Thesecondcommonstrategyistovisualizetheweights.TheseareusuallymostinterpretableonthefirstCONVlayerwhichislookingdirectlyattherawpixeldata,butitispo

6、ssibletoalsoshowthefilterweightsdeeperinthenetwork.Theweightsareusefultovisualizebecausewell-trainednetworksusuallydisplayniceandsmoothfilterswithoutanynoisypatterns.Noisypatternscanbeanindicatorofanetworkthathasn'tbeentrainedforlongenough,orpossiblyaverylowreg

7、ularizationstrengththatmayhaveledtooverfitting.Typical-lookingfiltersonthefirstCONVlayer(left),andthe2ndCONVlayer(right)ofatrainedAlexNet.Noticethatthefirst-layerweightsareveryniceandsmooth,indicatingnicelyconvergednetwork.Thecolor/grayscalefeaturesareclustered

8、becausetheAlexNetcontainstwoseparatestreamsofprocessing,andanapparentconsequenceofthisarchitectureisthatonestreamdevelopshigh-frequencygrayscalefeaturesandtheotherlow-freque

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯系客服。
3. 下載前請仔細閱讀文檔內容,確認文檔內容符合您的需求后進行下載,若出現內容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯系客服處理。