資源描述:
《蒙特卡洛模型方法.doc》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、`蒙特卡羅方法(MonteCarlomethod) 蒙特卡羅方法概述? 蒙特卡羅方法又稱統(tǒng)計(jì)模擬法、隨機(jī)抽樣技術(shù),是一種隨機(jī)模擬方法,以概率和統(tǒng)計(jì)理論方法為基礎(chǔ)的一種計(jì)算方法,是使用隨機(jī)數(shù)(或更常見的偽隨機(jī)數(shù))來解決很多計(jì)算問題的方法。將所求解的問題同一定的概率模型相聯(lián)系,用電子計(jì)算機(jī)實(shí)現(xiàn)統(tǒng)計(jì)模擬或抽樣,以獲得問題的近似解。為象征性地表明這一方法的概率統(tǒng)計(jì)特征,故借用賭城蒙特卡羅命名。? 蒙特卡羅方法的提出? 蒙特卡羅方法于20世紀(jì)40年代美國在第二次世界大戰(zhàn)中研制原子彈的“曼哈頓計(jì)劃”計(jì)劃的成員S.M.烏拉姆和J.·諾伊曼首先提出。數(shù)學(xué)家·諾伊曼用馳名世界的賭城—摩納哥的Monte
2、Carlo—來命名這種方法,為它蒙上了一層神秘色彩。在這之前,蒙特卡羅方法就已經(jīng)存在。1777年,法國Buffon提出用投針實(shí)驗(yàn)的方法求圓周率∏。這被認(rèn)為是蒙特卡羅方法的起源。? 蒙特卡羅方法的基本思想? MonteCarlo方法的基本思想很早以前就被人們所發(fā)現(xiàn)和利用。早在17世紀(jì),人們就知道用事件發(fā)生的“頻率”來決定事件的“概率”。19世紀(jì)人們用投針試驗(yàn)的方法來決定圓周率π。本世紀(jì)40年代電子計(jì)算機(jī)的出現(xiàn),特別是近年來高速電子計(jì)算機(jī)的出現(xiàn),使得用數(shù)學(xué)方法在計(jì)算機(jī)上大量、快速地模擬這樣的試驗(yàn)成為可能。? 考慮平面上的一個(gè)邊長為1的正方形及其部的一個(gè)形狀不規(guī)則的“圖形”,如何求出這個(gè)“
3、圖形”的面積呢?MonteCarlo方法是這樣一種“隨機(jī)化”的方法:向該正方形“隨機(jī)地”投擲N個(gè)點(diǎn),有M個(gè)點(diǎn)落于“圖形”,則該“圖形”的面積近似為M/N。可用民意測(cè)驗(yàn)來作一個(gè)不嚴(yán)格的比喻。民意測(cè)驗(yàn)的人不是征詢每一個(gè)登記選民的意見,而是通過對(duì)選民進(jìn)行小規(guī)模的抽樣調(diào)查來確定可能的優(yōu)勝者。其基本思想是一樣的。?科技計(jì)算中的問題比這要復(fù)雜得多。比如金融衍生產(chǎn)品(期權(quán)、期貨、掉期等)的定價(jià)及交易風(fēng)險(xiǎn)估算,問題的維數(shù)(即變量的個(gè)數(shù))可能高達(dá)數(shù)百甚至數(shù)千。對(duì)這類問題,難度隨維數(shù)的增加呈指數(shù)增長,這就是所謂的“維數(shù)的災(zāi)難”(CurseofDimensionality),傳統(tǒng)的數(shù)值方法難以對(duì)付(即使使用速度
4、最快的計(jì)算機(jī))。MonteCarlo方法能很好地用來對(duì)付維數(shù)的災(zāi)難,因?yàn)樵摲椒ǖ挠?jì)算復(fù)雜性不再依賴于維數(shù)。以前那些本來是無法計(jì)算的問題現(xiàn)在也能夠計(jì)算量。為提高方法的效率,科學(xué)家們提出了許多所謂的“方差縮減”技巧。? 另一類形式與MonteCarlo方法相似,但理論基礎(chǔ)不同的方法—“擬蒙特卡羅方法”(Quasi-MonteCarlo方法)—近年來也獲得迅速發(fā)展。我國數(shù)學(xué)家華羅庚、王元提出的“華—王”方法即是其中的一例。這種方法的基本思想是“Word文檔`用確定性的超均勻分布序列(數(shù)學(xué)上稱為LowDiscrepancySequences)代替MonteCarlo方法中的隨機(jī)數(shù)序列。對(duì)某些問題
5、該方法的實(shí)際速度一般可比MonteCarlo方法提出高數(shù)百倍,并可計(jì)算精確度。? 蒙特卡羅方法的基本原理? 由概率定義知,某事件的概率可以用大量試驗(yàn)中該事件發(fā)生的頻率來估算,當(dāng)樣本容量足夠大時(shí),可以認(rèn)為該事件的發(fā)生頻率即為其概率。因此,可以先對(duì)影響其可靠度的隨機(jī)變量進(jìn)行大量的隨機(jī)抽樣,然后把這些抽樣值一組一組地代入功能函數(shù)式,確定結(jié)構(gòu)是否失效,最后從中求得結(jié)構(gòu)的失效概率。蒙特卡羅是基于此思路進(jìn)行分析的。? 設(shè)有統(tǒng)計(jì)獨(dú)立的隨機(jī)變量Xi(i=1,2,3,…,k),其對(duì)應(yīng)的概率密度函數(shù)分別為fx1,fx2,…,fxk,功能函數(shù)式為Z=g(x1,x2,…,xk)。首先根據(jù)各隨機(jī)變量的相應(yīng)分布
6、,產(chǎn)生N組隨機(jī)數(shù)x1,x2,…,xk值,計(jì)算功能函數(shù)值Zi=g(x1,x2,…,xk)(i=1,2,…,N),若其中有L組隨機(jī)數(shù)對(duì)應(yīng)的功能函數(shù)值Zi≤0,則當(dāng)N→∞時(shí),根據(jù)伯努利大數(shù)定理及正態(tài)隨機(jī)變量的特性有:結(jié)構(gòu)失效概率,可靠指標(biāo)。? 從蒙特卡羅方法的思路可看出,該方法回避了結(jié)構(gòu)可靠度分析中的數(shù)學(xué)困難,不管狀態(tài)函數(shù)是否非線性、隨機(jī)變量是否非正態(tài),只要模擬的次數(shù)足夠多,就可得到一個(gè)比較精確的失效概率和可靠度指標(biāo)。特別在巖土體分析中,變異系數(shù)往往較大,與JC法計(jì)算的可靠指標(biāo)相比,結(jié)果更為精確,并且由于思路簡單易于編制程序。? 蒙特卡羅方法在數(shù)學(xué)中的應(yīng)用? 通常蒙特·卡羅方法通過構(gòu)造符合
7、一定規(guī)則的隨機(jī)數(shù)來解決數(shù)學(xué)上的各種問題。對(duì)于那些由于計(jì)算過于復(fù)雜而難以得到解析解或者根本沒有解析解的問題,蒙特·卡羅方法是一種有效的求出數(shù)值解的方法。一般蒙特·卡羅方法在數(shù)學(xué)中最常見的應(yīng)用就是蒙特·卡羅積分。? 蒙特卡羅方法的應(yīng)用領(lǐng)域? 蒙特卡羅方法在金融工程學(xué),宏觀經(jīng)濟(jì)學(xué),生物醫(yī)學(xué),計(jì)算物理學(xué)(如粒子輸運(yùn)計(jì)算、量子熱力學(xué)計(jì)算、空氣動(dòng)力學(xué)計(jì)算)等領(lǐng)域應(yīng)用廣泛。蒙特卡羅方法的工作過程? 在解決實(shí)際問題的時(shí)候應(yīng)用蒙特·