資源描述:
《初中數(shù)學(xué)所有幾何證明定理.pdf》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、???????????????????????最新資料推薦???????????????????初中數(shù)學(xué)所有幾何證明定理證明題的思路很多幾何證明題的思路往往是填加輔助線,分析已知、求證與圖形,探索證明。對于證明題,有三種思考方式:(1)正向思維。對于一般簡單的題目,我們正向思考,輕而易舉可以做出,這里就不詳細(xì)講述了。(2)逆向思維。顧名思義,就是從相反的方向思考問題。在初中數(shù)學(xué)中,逆向思維是非常重要的思維方式,在證明題中體現(xiàn)的更加明顯。同學(xué)們認(rèn)真讀完一道題的題干后,不知道從何入手,建議你從結(jié)論出發(fā)。例如:可以有這樣的思考過程:要證明某兩條邊相
2、等,那么結(jié)合圖形可以看出,只要證出某兩個三角形相等即可;要證三角形全等,結(jié)合所給的條件,看還缺少什么條件需要證明,證明這個條件又需要怎樣做輔助線,這樣思考下去??這樣我們就找到了解題的思路,然后把過程正著寫出來就可以了。(3)正逆結(jié)合。對于從結(jié)論很難分析出思路的題目,可以結(jié)合結(jié)論和已知條件認(rèn)真的分析。初中數(shù)學(xué)中,一般所給的已知條件都是解題過程中要用到的,所以可以從已知條件中尋找思路,比如給我們?nèi)切文尺呏悬c(diǎn),我們就要想到是否要連出中位線,或者是否要用到中點(diǎn)倍長法。給我們梯形,我們就要想到是否要做高,或平移腰,或平移對角線,或補(bǔ)形等等。正逆結(jié)合
3、,戰(zhàn)無不勝。1???????????????????????最新資料推薦???????????????????證明題要用到哪些原理?要掌握初中數(shù)學(xué)幾何證明題技巧,熟練運(yùn)用和記憶如下原理是關(guān)鍵。下面歸類一下,多做練習(xí),熟能生巧,遇到幾何證明題能想到采用哪一類型原理來解決問題。一、證明兩線段相等1.兩全等三角形中對應(yīng)邊相等。2.同一三角形中等角對等邊。3.等腰三角形頂角的平分線或底邊的高平分底邊。4.平行四邊形的對邊或?qū)蔷€被交點(diǎn)分成的兩段相等。5.直角三角形斜邊的中點(diǎn)到三頂點(diǎn)距離相等。6.線段垂直平分線上任意一點(diǎn)到線段兩段距離相等。7.角平分線
4、上任一點(diǎn)到角的兩邊距離相等。8.過三角形一邊的中點(diǎn)且平行于第三邊的直線分第二邊所成的線段相等。9.同圓(或等圓)中等弧所對的弦或與圓心等距的兩弦或等圓心角、圓周角所對的弦相等。10.圓外一點(diǎn)引圓的兩條切線的切線長相等或圓內(nèi)垂直于直徑的弦被直徑分成的兩段相等。11.兩前項(xiàng)(或兩后項(xiàng))相等的比例式中的兩后項(xiàng)(或兩前項(xiàng))相等。12.兩圓的內(nèi)(外)公切線的長相等。13.等于同一線段的兩條線段相等。二、證明兩個角相等1.兩全等三角形的對應(yīng)角相等。2.同一三角形中等邊對等角。2???????????????????????最新資料推薦??????????
5、?????????3.等腰三角形中,底邊上的中線(或高)平分頂角。4.兩條平行線的同位角、內(nèi)錯角或平行四邊形的對角相等。5.同角(或等角)的余角(或補(bǔ)角)相等。6.同圓(或圓)中,等弦(或?。┧鶎Φ膱A心角相等,圓周角相等,弦切角等于它所夾的弧對的圓周角。7.圓外一點(diǎn)引圓的兩條切線,圓心和這一點(diǎn)的連線平分兩條切線的夾角。8.相似三角形的對應(yīng)角相等。9.圓的內(nèi)接四邊形的外角等于內(nèi)對角。10.等于同一角的兩個角相等。三、證明兩條直線互相垂直1.等腰三角形的頂角平分線或底邊的中線垂直于底邊。2.三角形中一邊的中線若等于這邊一半,則這一邊所對的角是直角
6、。3.在一個三角形中,若有兩個角互余,則第三個角是直角。4.鄰補(bǔ)角的平分線互相垂直。5.一條直線垂直于平行線中的一條,則必垂直于另一條。6.兩條直線相交成直角則兩直線垂直。7.利用到一線段兩端的距離相等的點(diǎn)在線段的垂直平分線上。8.利用勾股定理的逆定理。9.利用菱形的對角線互相垂直。10.在圓中平分弦(或?。┑闹睆酱怪庇谙摇?1.利用半圓上的圓周角是直角。四、證明兩直線平行1.垂直于同一直線的各直線平行。3???????????????????????最新資料推薦???????????????????2.同位角相等,內(nèi)錯角相等或同旁內(nèi)角互補(bǔ)的
7、兩直線平行。3.平行四邊形的對邊平行。4.三角形的中位線平行于第三邊。5.梯形的中位線平行于兩底。6.平行于同一直線的兩直線平行。7.一條直線截三角形的兩邊(或延長線)所得的線段對應(yīng)成比例,則這條直線平行于第三邊。五、證明線段的和差倍分1.作兩條線段的和,證明與第三條線段相等。2.在第三條線段上截取一段等于第一條線段,證明余下部分等于第二條線段。3.延長短線段為其二倍,再證明它與較長的線段相等。4.取長線段的中點(diǎn),再證其一半等于短線段。5.利用一些定理(三角形的中位線、含30度的直角三角形、直角三角形斜邊上的中線、三角形的重心、相似三角形的性
8、質(zhì)等)。六、證明角的和差倍分1.與證明線段的和、差、倍、分思路相同。2.利用角平分線的定義。3.三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和。七、證明線段不等1.同