資源描述:
《九類常見遞推數(shù)列求通項公式方法》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、九類常見遞推數(shù)列求通項公式方法遞推數(shù)列通項求解方法類型一:,,apaq,,p,1nn,1,,思路1(遞推法):apaqppaqqpppaqqq,,,,,,,,,,(),,nnnn,,,123,,,,qqn,12nn,,21………。,,,,,paqpp(1),,,,,pap11,,11pp,,,,q思路2(構(gòu)造法):設(shè),即得,數(shù)列,,apa,,,,,,pq,,1,,,,nn,1p1,,,qqn,1是以為首項、為公比的等比數(shù)列,則,即a,,a,,paap,,,,,n1n1,,11pp,,,,,,qqn,1。aap
2、,,,n1,,11pp,,,,例1已知數(shù)列滿足且,求數(shù)列的通項公式。a,1aaa,,23a,,,,nnn,11n解:方法1(遞推法):,,aaaa,,,,,,,,,,232(23)3222333……,,nnnn,,,123,,33,,nnn,,,211n,12…。,,,,,23(122,,,,,,,2)1223,,,,2112,,?方法2(構(gòu)造法):設(shè),即,數(shù)列是以aa,,,,,2,,3a,3a,,34,,,,nn,1n1nn,,11n,12為首項、為公比的等比數(shù)列,則,即。a,,,,3422a,,23nn1
3、類型二:aafn,,()nn,1思路1(遞推法):aafnafnfnafnfnfn,,,,,,,,,,,,,,,,(1)(2)(1)(3)(2)(1)nnnn,,,123n,1…。,,afn(),1i,1思路2(疊加法):,依次類推有:、aafn,,,(1)aafn,,,(2)nn,1nn,,12n,1、…、,將各式疊加并整理得,即aafn,,()aafn,,,(3)aaf,,(1),nn,,2321n1i,1n,1。aafn,,(),n1i,1例2已知,,求。a,1aaan,,1nn,1n解:方法1(遞推法
4、):aanannannn,,,,,,,,,,,,,(1)(2)(1)nnnn,,,123nnn(1),………。,,,,a[23,,,,,,,(2)(1)]nnnn,12,1i方法2(疊加法):,依次類推有:、、…、aan,,aan,,,1aan,,,2nn,1nn,,12nn,,23nnnnn(1),aan,,,將各式疊加并整理得,。aa,,2aann,,,,,,,n1121n2,,,i221ii2類型三:afna,,()nn,1思路1(遞推法):…afnafnfnafnfnfna,,,,,,,,,,,,,,
5、,,(1)(1)(2)(1)(2)(3)nnnn,,,123…。,,,,fff(1)(2)(3),,,,,fnfna(2)(1)1aann,1思路2(疊乘法):,依次類推有:、,,(1),,(2)fnfnaa,1nn,2aaan,2n2、…、,將各式疊乘并整理得…,,(3),f(1)(1)(2)(3),,,,ffffnaaa11n,3,即…。,,,,fnfn(2)(1)afff,,,,(1)(2)(3),,,,,fnfna(2)(1)n1n,1例3已知,,求。a,1aaa,1nnn,1n,1nnnnnn,,,
6、,,,112123解:方法1(遞推法):…aaaa,,,,,,,nnnn,,,123nnnnnn,,,,11112。,nn(1),aaaan,1n,2n,32nn,1n,23方法2(疊乘法):,依次類推有:、、…、、,,,,ana4an,1an,1,1n,2nn,32a21a1nnn,,,123n2,將各式疊乘并整理得…,即,,,,,,,43a3annn,,1111212nnn,,,123…。,,,a,,,,n43(1)nn,nnn,,113類型四:apaqa,,nnn,,11思路(特征根法):為了方便,我們
7、先假定、。遞推式對應(yīng)的特征方程am,an,12n,1p,,2為,當特征方程有兩個相等實根時,(、為待定系xpxq,,c,,,dacnd,,n,,2,,數(shù),可利用、求得);當特征方程有兩個不等實根時、時,xam,an,x1212nn,,11(、為待定系數(shù),可利用、求得);當特征方程的根aexfx,,fam,an,e12n12為虛根時數(shù)列的通項與上同理,此處暫不作討論。a,,n例4已知、,,求。aa,2a,3aaa,,612nnn,,11n22解:遞推式對應(yīng)的特征方程為即,解得、。x,2x,,3xx,,,6xx,
8、,,6012nn,,11設(shè),而、,即aexfx,,a,2a,312n129,e,,ef,,2,91,5nn,,11,解得,即。a,,,,,2(3),,n1233ef,,55,,f,,5,4n類型五:,,aparq,,pq,,0nn,1,,aan,1nn,1思路(構(gòu)造法):,設(shè),則aparq,,,,,,,,,,nn,1nn,1qq,,p,,,,,qp,,q,,arar,,1n,從而解得。那么是以為首項