平面解析幾何教學的幾點建議

平面解析幾何教學的幾點建議

ID:13556089

大小:29.50 KB

頁數(shù):4頁

時間:2018-07-23

平面解析幾何教學的幾點建議_第1頁
平面解析幾何教學的幾點建議_第2頁
平面解析幾何教學的幾點建議_第3頁
平面解析幾何教學的幾點建議_第4頁
資源描述:

《平面解析幾何教學的幾點建議》由會員上傳分享,免費在線閱讀,更多相關內容在行業(yè)資料-天天文庫

1、關于平面解析幾何教學的幾點建議平面解析幾何是高中數(shù)學的一個重要模塊,由于平面解析幾何既涉及到數(shù)學計算又涵蓋了圖形分析,而且對學生的思考能力有很高的要求,故而一直是高考考察的一項重點內容。有些教師在講解到這一章內容時由于缺乏對平面解析幾何的整體把握,導致教學過程中側重點不明確,教學效果不理想。下面,筆者就結合自己的教學經驗,對高中平面解析幾何的教學提幾點自己的建議,希望可以起到拋磚引玉的作用。一、明確學習目的從心理學角度來講,一個人只有明確了自己的行為動機和行為目的,才能盡自己的全力去努力追求。平面解析的

2、教學過程也是一樣,教師只有首先讓學生明確自己的學習目的,這樣才能激發(fā)學生的學習興趣,增強學生學習的主動性。筆者在講授這一章節(jié)時一般會分兩個層次向學生闡述學習平面解析幾何的目的:一是明確這門課程的發(fā)展過程。平面解析幾何是從十七世紀開始逐漸興起的,與其他學科一樣,都是生產生活的需要才促使這門學科不斷向前推進的。二是明確這門學科的研究內容。平面解析幾何是數(shù)形結合思想的重要體現(xiàn),這門學科將同一運動規(guī)律的點、線、面與數(shù)量關系統(tǒng)一起來,將曲線看作是點的運動軌跡,它的基本思想是通過坐標將幾何圖形轉化為方程,通過對方程

3、的研究達到對幾何圖形性質的研究,也就是現(xiàn)在所說的用代數(shù)方法研究幾何問題。通過這兩層理解,讓學生在直觀上對平面解析幾何有一個大體的輪廓,知道它的作用和基本研究方法,有利于學生后續(xù)學習活動的開展。二、優(yōu)化學習方法教師在平面解析幾何的講解過程中,要注意學生學習方法的培養(yǎng)。良好的學習方法能起到事半功倍的效果,只有讓學生選擇最有效的學習方法,才能保證學習效果。筆者認為,數(shù)學教師可以從以下幾個方面來對學生進行方法指導。1.強化概念。概念學習是數(shù)學學習的第一步,也是整個數(shù)學體系的基礎,基礎打不牢勢必影響后續(xù)的學習,概

4、念學不懂勢必造成后續(xù)數(shù)學問題的無法解決。因此,教師在平面解析幾何的教學過程中,一定要強化學生對概念的理解和掌握。以橢圓的定義為例,可能很多學生都覺的這是一個再簡單不過的問題了,但是如果我們對橢圓定義深入探討下去:橢圓的第一定義和第二定義的出發(fā)點是什么?為什么有了第一定義之后還要再引入第二定義?對于所有的橢圓曲線,是不是有一個統(tǒng)一的定義?各個橢圓曲線之間在定義上又有什么樣的區(qū)別和聯(lián)系?這些問題都是教師在進行教學過程中要讓學生掌握的內容。教師對定義、概念的教學不能讓學生僅僅停留在識記階段,要讓學生進行思考、

5、進行總結,形成自己對知識的理解,這樣才算真正掌握了概念。2.體現(xiàn)數(shù)形結合思想。數(shù)形結合思想是高中數(shù)學思想當中非常重要的一種,我國著名數(shù)學家化羅庚先生曾經說過:“數(shù)缺形時少直觀,形少數(shù)時難入微,數(shù)形結合百般好,隔裂分家萬事休。”這四句話很好地概括了數(shù)形結合思想,指出了數(shù)據(jù)運算和圖形分析的各自特點。就平面解析幾何而言,它的本質是用代數(shù)的思想來解決幾何問題,通過坐標將圖形曲線轉化為代數(shù)問題。因此教師在進行平面解析幾何教學的過程中,要時刻注意體現(xiàn)數(shù)形結合思想和方程轉化思想,讓學生從代數(shù)和幾何兩方面去理解這一部分

6、的內容。那么如何將幾何圖形用“數(shù)”的形式表示出來,這是我們學習這一部分內容需要解決的重要問題。如果告訴你兩條直線垂直,你會想到什么?如果告訴你兩個圖形只有一個交點,你又會聯(lián)想到去用代數(shù)關系來表示它嗎?這只是兩個很簡單的幾何關系,所以學生對這一點很容易想到,但是在綜合題中,涉及的知識點多了,還能想到嗎?而關于兩個圖形位置關系的問題,如果只是用“形”去解釋,根本得不到任何精確的結論,但是與“數(shù)”結合,我們會發(fā)現(xiàn),兩圖形如果只有一個交點,實際上就是兩圖形的聯(lián)立方程只有一個解。根據(jù)這一點,便可以讓“形”入微,就

7、可以得到精確的數(shù)量之間的關系了。這實際上是代數(shù)中方程的思想在解析幾何中最經典的應用。三、掌握解題技巧學生在了解了平面解析幾何的基本思想后,教師還要引導學生掌握一些具體做題的技巧。綜合型的大題往往最令學生頭疼。有的教師說,多做題,多總結。當然,各種各樣的題型做多了,自然會拿過一道題就知道這道題應該先做什么后做什么。可是對于現(xiàn)在的學生而言,課業(yè)內容多,負擔重,是不可能有那么多的時間去獲得這些經驗的。這時候學生應該怎么辦呢?筆者認為教師可以從以下三個方面對學生進行指導:1.引導學生問自己:“知道什么?”拿到一

8、道題目,看到題設,能從中知道些什么,尤其是其中的隱含內容。題目不可能直接告訴所有的信息,這時就需要挖掘出題目中隱含的信息,而這些信息往往是解題的關鍵。當然,根據(jù)這些信息能求出什么,這也是一定要弄清楚的。2.引導學生問自己:“要求什么?”這道題目讓求什么?這時可不再看題設,而從問題本身入手,看這道題目求的是什么,分析一下知道了哪些條件就可以得到問題的答案。在這里一定要注意利用數(shù)形結合的思想,其實很多問題轉換一下思考的角度就會變得非常簡單了。3

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內容,確認文檔內容符合您的需求后進行下載,若出現(xiàn)內容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。