鐵路行包配裝算法研究與實現(xiàn).doc

鐵路行包配裝算法研究與實現(xiàn).doc

ID:14998557

大?。?3.00 KB

頁數(shù):16頁

時間:2018-07-31

鐵路行包配裝算法研究與實現(xiàn).doc_第1頁
鐵路行包配裝算法研究與實現(xiàn).doc_第2頁
鐵路行包配裝算法研究與實現(xiàn).doc_第3頁
鐵路行包配裝算法研究與實現(xiàn).doc_第4頁
鐵路行包配裝算法研究與實現(xiàn).doc_第5頁
資源描述:

《鐵路行包配裝算法研究與實現(xiàn).doc》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、鐵路行包配裝算法研究與實現(xiàn)  論文關(guān)鍵詞:鐵路車站行包裝配編程實現(xiàn)  論文摘要:行包裝配是鐵路行包管理的重難點之一,在鐵路行包運輸中出現(xiàn)的大部分問題均是由行包裝配不當(dāng)引起的。影響行包裝配的因素較多,通過對鐵路行包裝配的流程和影響行包裝配的主要因素進(jìn)行分析,建立了鐵路車站行包裝配問題的條件約束模型,提出鐵路行包裝配的目標(biāo)函數(shù),最后給出了鐵路行包裝配問題的編程實現(xiàn)方法。  鐵路行李包裹運輸(以下簡稱行包運輸)是利用鐵路客運設(shè)施,以隨掛旅客列車的行李車為載體的一種運輸形式[1],其業(yè)務(wù)流程如圖1所示。近年來,

2、隨著行包運輸業(yè)務(wù)量的增長,大部分車站在承運、交付、中轉(zhuǎn)和綜合統(tǒng)計報表打印等都實現(xiàn)了計算機(jī)的自動化管理。但是,在整個業(yè)務(wù)流程中的裝車單生成部分,現(xiàn)如今依然采用人工或半人工的方式進(jìn)行處理。由于與“裝車”相關(guān)的因素較多,所以大多的鐵路行包管理系統(tǒng)對此采取回避的辦法。如今,在行包運輸中出現(xiàn)的大部分問題如貨物漏裝、錯裝、中轉(zhuǎn)不暢、快件不快等問題均是由行包裝配不當(dāng)引起的[2]。為此,解決好行包配裝問題,優(yōu)化運載設(shè)備的利用率,降低運輸成本是一個非常有價值的研究課題。本文從行包管理軟件編程的實際出發(fā),提出了一種優(yōu)化的行

3、包配裝算法,并給出了實現(xiàn)方法?! ?行包配裝問題分析  行包裝配主要是指合理制定待裝行包的裝配計劃。在現(xiàn)有運能一定的條件下,根據(jù)行包運達(dá)的要求,通過計算機(jī)科學(xué)的輔助決策,使行李車的利用效率最大[3],最大可能的減少和避免裝車錯誤。鐵路車站行包配裝歸屬背包問題,但又與普通的背包問題有一定的不同。普通的背包問題是一對多的關(guān)系,而對于本問題的映射是多對多的關(guān)系,約束條件需要考慮客運車次、行包到站、運到期限、保價金額、貨物優(yōu)先級和車次的運量、容積、沿途站裝卸作業(yè)能力等因素,行包配裝單的生成流程如圖2所示。鐵路行

4、包裝配問題在學(xué)術(shù)上屬于復(fù)雜約束條件的組合優(yōu)化間題。從圖2可以得出鐵路行包配裝可分解為三步?! tep1:根據(jù)車次和行包到站生成待裝車的行包集  行包的到站與車次的??空局g有兩種情況,一是貨物的到站屬于當(dāng)前車次的??空?,此行包直接加入到備裝貨物集;二是貨物到站不在本次車的??空局?,但又無直達(dá)車,經(jīng)計算裝此趟車進(jìn)行中轉(zhuǎn)的距離最短,則此到站的行包加入到備裝貨物集中。16  Step2:根據(jù)行包運達(dá)要求,生成當(dāng)前車次的裝車單  第一步生成的是應(yīng)裝車的貨物清單,目前鐵路行包運輸還達(dá)不到應(yīng)運即運的程度,因此還應(yīng)

5、根據(jù)行包運達(dá)的要求,通過計算機(jī)科學(xué)的輔助決策,使行李車的利用效率最大,最大可能的減少和避免裝車錯誤[8]。裝車單生成的約束條件主要有重量和體積等方面?! tep3:人工調(diào)整確認(rèn)裝車單  計算機(jī)輔助生成的裝裝配計劃應(yīng)基本達(dá)到了最佳優(yōu)化裝車方案,但由于車站運輸?shù)哪承┡R時特殊要求,車站行李員可對裝車單在一定許可范圍內(nèi)進(jìn)行調(diào)整。  2行包配裝問題的數(shù)學(xué)模型  令待運行包集合為X,車站發(fā)車車次集合T。二者的映射定義為:  ƒ:X→T(1)  現(xiàn)在要為每一趟車進(jìn)行配裝,生成每一車次的裝車單:x∈X。為了

6、求解x,首先要確定映射關(guān)系ƒ。由公式(1)可以看出,即使確定了ƒ,也很難最終求解x,如果能求出T中一個車次的結(jié)果,則其他車次依此類推,便可求出全部解。由此將公式(1)簡化為:  ƒ(x)→Ti(1£i£m,共有m趟車)(2)  令Ti車次??空镜募嫌肧i(1£i£m)表示,承運站直達(dá)站集合S直達(dá)={S1∩S2∩…∩Sm}。貨物??空炯嫌肈={D1,D2,…,Dn}表示?! ?.1條件約束模型  2.1.1行包到站約束條件 

7、?。?)行包到站為Ti次車的??空?,即:DiÎSi?! 。?)行包到站無直達(dá)車(DiÏS直達(dá)),但是裝此車次中轉(zhuǎn)貨物運送距離最短?! ∫虼诵邪秸炯s束條件公式:  (DiÎSi)

8、

9、(DiÏS直達(dá)&&minD(Di,Ti))(3)  式中minD(Di,Ti)表示貨物裝載Ti次車運送距離最短。16  2.1.2行包運輸車載重約束條件k=1,2,…(4)  式中xij∈{0,1}為第i車站,第j件貨物的裝載狀態(tài),gij為第i車站,第j件貨物的的重

10、量,G裝為車輛已裝載重量,G車為車輛的規(guī)定載重量?! ?.1.3行包運輸車容積約束條件  ?。?1,2,…(5)  式中Vij為第i站上第j件行包的體積,V裝為車輛已裝載容積,V車為行李車的容積;  2.1.4行包運到期限約束條件  (6)  式中為第i站上第j件行包的運到期限;為第i站上第j件行包在該站已存放的時間,為該列車從第i站到第m站所需運行時間,第k站為該行包卸車站?! ?.1.5??空狙b卸能力約束條件k=1,2,…(7)  式中

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。