資源描述:
《基于統(tǒng)計(jì)模型的汛期降水預(yù)測(cè)分析——以義烏市為例》由會(huì)員上傳分享,免費(fèi)在線(xiàn)閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫(kù)。
1、萬(wàn)方數(shù)據(jù)Basedonthefloodseasonprecipitationofyiwuastheresearchobject,thispaperattemptstouseneuralnetworkpredictionmethodandthresholdautoregressivemodelrespectivelytostudythefloodseasonprecipitationofyiwu.Thispaperchosetheelninoeventsandthesubtropicalhighridgelinepositionasantecedentinfluencedfac
2、torswhichhavegoodresponseoffloodseasonprecipitationofyiwu,49yearsof1959-2007floodseasonprecipitationasthetrainingsample,and4yearsoffloodseasonprecipitationof2008—201astestsamples.Thetwomodelswereanalyzedbythreeaspects:thehistoricalsamplefittingprecision,theforecastresultsofindependentsample
3、andactualforecastability.Thefinalresultisusedtoverifythepossibilitytousetheneuralnetworkmodelandthethresholdautoregressivemodelforfloodseasonprecipitationforecastinyiwu,andalsoprovidesthebasisofthetheoryandpracticeoffloodseasonprecipitationforecastmodelinthecomingyears.Themainconclusionsoft
4、hisstudyaresummarizedasfollows:(1)Thispaperstudiesthecharacteristicsoffloodseasonprecipitationofyiwu,andalsothemainfactorsinfluencingprecipitation,provedthefloodseasonprecipitationofyiwuhasagoodresponsetosolaractivity,elninoevents,andpositionofsubtropicalhighridgeline.Onthebasisofmanyresear
5、cherstostudyconclusion,thispaperchoseelninoeventsandthesubtropicalhighridgelinepositionasimpactfactorstoestablishmodels.Thefinaldataresultsconfirmedthatitcanignificantlyreducetheprecipitationforecasterrorwhileselectingtheelninoeventsandpositionofsubtropicalhighridgelineastheearlystageofthei
6、mpactfactor.(2)Neuralnetworkforecastmodelandthethresholdautoregressivemodelareeffectiveprocessingnonlinearhydrologicsystemmodeloffloodseasonprecipitationforecastofyiwucity.BPneuralnetworkforecastingmodelisbetterwhenitcomestothehistoricalsamplefittingprecision,theforecastresultsofindependent
7、sampleandactualpredictionability.However,thedataofneuralnetworkforecastmodelandthresholdpredictionmodelareinsufficient,SOtheprecisionoftheirresultsneedslmprovmg.Keywords:NeuralNetworkForecastModel;ThresholdAutoregressiveModel;FloodSeasonPrecipitation;Imp