Learning Hierarchical Features for Scene Labeling.pdf

Learning Hierarchical Features for Scene Labeling.pdf

ID:34364471

大?。?.37 MB

頁數(shù):15頁

時間:2019-03-05

Learning Hierarchical Features for Scene Labeling.pdf_第1頁
Learning Hierarchical Features for Scene Labeling.pdf_第2頁
Learning Hierarchical Features for Scene Labeling.pdf_第3頁
Learning Hierarchical Features for Scene Labeling.pdf_第4頁
Learning Hierarchical Features for Scene Labeling.pdf_第5頁
資源描述:

《Learning Hierarchical Features for Scene Labeling.pdf》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫

1、1LearningHierarchicalFeaturesforSceneLabelingClementFarabet,CamilleCouprie,LaurentNajman,YannLeCun′AbstractScenelabelingconsistsinlabelingeachpixelinanimagewiththecategoryoftheobjectitbelongsto.Weproposeamethodthatusesamultiscaleconvolutionalnetworktrainedfromrawpixelstoextractdensefeaturevector

2、sthatencoderegionsofmultiplesizescenteredoneachpixel.Themethodalleviatestheneedforengineeredfeatures,andproducesapowerfulrepresentationthatcapturestexture,shapeandcontextualinformation.Wereportresultsusingmultiplepost-processingmethodstoproducethe?nallabeling.Amongthose,weproposeatechniquetoauto

3、maticallyretrieve,fromapoolofsegmentationcomponents,anoptimalsetofcomponentsthatbestexplainthescene;thesecomponentsarearbitrary,e.g.theycanbetakenfromasegmentationtree,orfromanyfamilyofover-segmentations.ThesystemyieldsrecordaccuraciesontheSiftFlowDataset(33classes)andtheBarcelonaDataset(170clas

4、ses)andnear-recordaccuracyonStanfordBackgroundDataset(8classes),whilebeinganorderofmagnitudefasterthancompetingapproaches,producinga320×240imagelabelinginlessthanasecond,includingfeatureextraction.IndexTermsConvolutionalnetworks,deeplearning,imagesegmentation,imageclassi?cation,sceneparsing.?1IN

5、TRODUCTIONthepresenceofahumanfacegenerallyindicatesthepresenceofahumanbodynearby),butmayalsodependMAGEUNDERSTANDINGisataskofprimaryimpor-onlong-rangeinformation.Forexample,identifyingaItanceforawiderangeofpracticalapplications.Onegreypixelasbelongingtoaroad,asidewalk,agraycar,importantsteptoward

6、sunderstandinganimageistoaconcretebuilding,oracloudyskyrequiresawidecon-performafull-scenelabelingalsoknownasasceneparsing,textualwindowthatshowsenoughofthesurroundingswhichconsistsinlabelingeverypixelintheimagetomakeaninformeddecision.Toaddressthisproblem,withthecategoryoftheobjectitbelongsto.A

7、fteraweproposetouseamulti-scaleconvolutionalnetwork,perfectsceneparsing,everyregionandeveryobjectiswhichcantakeintoaccountlargeinputwindows,whiledelineatedandtagged.Onechallengeofsceneparsingkeepingthenumberoffreeparameterst

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。