三角形的外角和教案(吳海梅)

三角形的外角和教案(吳海梅)

ID:43143535

大?。?71.34 KB

頁(yè)數(shù):6頁(yè)

時(shí)間:2019-09-27

三角形的外角和教案(吳海梅)_第1頁(yè)
三角形的外角和教案(吳海梅)_第2頁(yè)
三角形的外角和教案(吳海梅)_第3頁(yè)
三角形的外角和教案(吳海梅)_第4頁(yè)
三角形的外角和教案(吳海梅)_第5頁(yè)
資源描述:

《三角形的外角和教案(吳海梅)》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫(kù)。

1、9.1.2三角形的外角和(華東師大版七年級(jí)下冊(cè))簡(jiǎn)陽(yáng)通材實(shí)驗(yàn)學(xué)校吳海梅教學(xué)目標(biāo)知識(shí)與能力:了解三角形的外角概念和三角形外角的性質(zhì),并能運(yùn)用三角形的外角性質(zhì),學(xué)會(huì)用簡(jiǎn)單的說(shuō)理來(lái)計(jì)算三角形的有關(guān)角,并能嘗試去解決一些實(shí)際問題。過程與方法:經(jīng)歷探索三角形的外角性質(zhì)的運(yùn)用過程,學(xué)會(huì)用簡(jiǎn)單的說(shuō)理來(lái)計(jì)算三角形的有關(guān)角。'情感與態(tài)度目標(biāo):通過觀察和動(dòng)手操作,體會(huì)探索過程,學(xué)會(huì)推理的數(shù)學(xué)思想方法,培養(yǎng)主動(dòng)探索、勇于發(fā)現(xiàn),敢于實(shí)踐及合作交流的習(xí)慣。教學(xué)重點(diǎn)與難點(diǎn):重點(diǎn):三角形的外角及其性質(zhì),三角形的外角和定理難點(diǎn):三角外角性質(zhì)及外角和定理的論證過程,運(yùn)用三角形外角性質(zhì)進(jìn)行有關(guān)計(jì)算時(shí)能準(zhǔn)確地表達(dá)推理的過程和方

2、法。教學(xué)用具ppt三角板教學(xué)過程一、創(chuàng)設(shè)情境足球場(chǎng)上的數(shù)學(xué)知識(shí):某球員在P處受阻需傳球,請(qǐng)幫助P選擇應(yīng)傳給B球員,還是C球員使其進(jìn)球的可能性更大。(不考慮其他因素)P*教師引導(dǎo)學(xué)生分析張角的大小決定進(jìn)球的兒率。二、探究新知2、探究三角形外角和內(nèi)角的關(guān)系(1)算一算:若ZA=50。,ZB=60°,試求ZACB,ZACD的度數(shù).并說(shuō)出你的理由.教師引導(dǎo)學(xué)生分析:ZACD與三角形的內(nèi)角Z間有怎樣的位置和數(shù)量關(guān)系呢?教師引導(dǎo)學(xué)生猜想:任意三角形中ZACD二ZA+ZB(2)教師引導(dǎo)學(xué)生推理論證ZACD=ZA+ZB證明:VZACD+ZACB=180°(鄰補(bǔ)角的定義)ZA+ZB+ZACB=180°(三角

3、形內(nèi)角和為180°)AZACD=180°-ZACBA+ZB=180°-ZACB?ZACD=A+ZB三角形的外角性質(zhì):Z1=ZB①三角形的一個(gè)外角等于與它丕相鄰的兩個(gè)內(nèi)角之和。小試身手1:求Z1的度數(shù)小試身手2:如圖:Zl>Z2>ZA的大小關(guān)系是由小試身手1中的具體數(shù)據(jù),教師提問:三角形的外角與任何一個(gè)不相鄰的內(nèi)角有怎樣的大小關(guān)系?學(xué)生猜想:三角形的一個(gè)外角大于任何一個(gè)與它不相鄰的內(nèi)角。(2)學(xué)生推導(dǎo):ZACD>ZB,ZACD>ZA解決球場(chǎng)問題分析:???ZACD>ZB(三角形的外角大于任何一個(gè)不如刼的內(nèi)荷、???B進(jìn)球的兒率更大例1:如圖ZA=60°ZACD二40。ZABE二20。求ZB

4、DC、ZBFC的度數(shù)。得岀:三角形的外角性質(zhì)②三角形的一個(gè)外角大于任何一個(gè)與它不相鄰的內(nèi)角。鞏固練習(xí):已知a//b.求ZA2850°Cb3、三角形的外角和(1)學(xué)生自主探究①三角形每一個(gè)頂點(diǎn)處相對(duì)應(yīng)的外角有兒個(gè)?它們之間是什么關(guān)系②三角形的外角有兒個(gè)?(2)三角形的外角和:從三角形每個(gè)內(nèi)角相鄰的兩個(gè)外角中各拿一個(gè)相加,得到的和稱為三角形的外角和。算一算:Z1、乙2、Z3的度數(shù)Z1+Z2+Z3=360°教師引導(dǎo)學(xué)生猜想:任意三角形中Z1+Z2+Z3=360°法一:TZ1+ZBAC二180°Z2+ZABC二180°Z3+ZACB二180°(鄰補(bǔ)角的定義)AZ1+Z2+Z3+ZBAC+ZABC

5、+ZACB=540°又VZBAC+ZABC+ZACB=180°(三角形內(nèi)角和180°)AZ1+Z2+Z3=36O°法二:VZ1=Z5+Z6Z2=Z4+Z6Z3=Z5+Z4???Z1+Z2+Z3二Z5+Z6+Z5+Z4+Z4+Z6二2(Z4+Z5+Z6)=360°結(jié)論:三角形外角和為360°鞏固練習(xí)求ZA+ZB+ZC+ZD+ZE+ZF=拓展1:ZA+ZB+ZC+ZD+ZEF小試身手3:己知AABC的三個(gè)外角比為2:3:4,求它最大的內(nèi)角度數(shù)為多少?拓展2:已知點(diǎn)D是AABC內(nèi)一點(diǎn),求證:ZBDOZBAC/I)BC四、課時(shí)總結(jié)學(xué)生總結(jié)本節(jié)課所學(xué)知識(shí):(1)三角形的外角等于與它丕相鄰的兩個(gè)內(nèi)角

6、之和。(2)三角形的一個(gè)外角大于任何一個(gè)與它不相鄰的內(nèi)角。(3)三角形外角和為360°五、作業(yè)布置教科書64頁(yè)1、2、3六、板書設(shè)計(jì)三角形外角性質(zhì):9.1.2三角形的外角和例1:略(1)三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角之和。(2)三角形的一個(gè)外角大于任何一個(gè)與它不相鄰的內(nèi)角。(3)三角形外角和為360。

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁(yè),下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無(wú)此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫(kù)負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭(zhēng)議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無(wú)法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。