資源描述:
《連續(xù)系統(tǒng)的頻域分析.ppt》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、第四章傅里葉變換§4.1正交函數(shù)§4.2周期信號(hào)的頻譜分析§4.3典型周期信號(hào)的頻譜§4.4非周期信號(hào)的頻譜分析§4.5典型非周期信號(hào)的頻譜引言1引言2頻域分析從本章開始由時(shí)域轉(zhuǎn)入變換域分析,首先討論傅里葉變換。傅里葉變換是在傅里葉級(jí)數(shù)正交函數(shù)展開的基礎(chǔ)上發(fā)展而產(chǎn)生的,這方面的問題也稱為傅里葉分析(頻域分析)。將信號(hào)進(jìn)行正交分解,即分解為三角函數(shù)或復(fù)指數(shù)函數(shù)的組合。頻域分析將時(shí)間變量變換成頻率變量,揭示了信號(hào)內(nèi)在的頻率特性以及信號(hào)時(shí)間特性與其頻率特性之間的密切關(guān)系,從而導(dǎo)出了信號(hào)的頻譜、帶寬以及濾波、調(diào)制和頻分復(fù)用等重要
2、概念。3發(fā)展歷史1822年,法國數(shù)學(xué)家傅里葉(J.Fourier,1768-1830)在研究熱傳導(dǎo)理論時(shí)發(fā)表了“熱的分析理論”,提出并證明了將周期函數(shù)展開為正弦級(jí)數(shù)的原理,奠定了傅里葉級(jí)數(shù)的理論基礎(chǔ)。泊松(Poisson)、高斯(Guass)等人把這一成果應(yīng)用到電學(xué)中去,得到廣泛應(yīng)用。19世紀(jì)末,人們制造出用于工程實(shí)際的電容器。進(jìn)入20世紀(jì)以后,諧振電路、濾波器、正弦振蕩器等一系列具體問題的解決為正弦函數(shù)與傅里葉分析的進(jìn)一步應(yīng)用開辟了廣闊的前景。在通信與控制系統(tǒng)的理論研究和工程實(shí)際應(yīng)用中,傅里葉變換法具有很多的優(yōu)點(diǎn)?!癋
3、FT”快速傅里葉變換為傅里葉分析法賦予了新的生命力。4主要內(nèi)容本章從傅里葉級(jí)數(shù)正交函數(shù)展開問題開始討論,引出傅里葉變換,建立信號(hào)頻譜的概念。通過典型信號(hào)頻譜以及傅里葉變換性質(zhì)的研究,初步掌握傅里葉分析方法的應(yīng)用。對(duì)于周期信號(hào)而言,在進(jìn)行頻譜分析時(shí),可以利用傅里葉級(jí)數(shù),也可以利用傅里葉變換,傅里葉級(jí)數(shù)相當(dāng)于傅里葉變換的一種特殊表達(dá)形式。本章最后研究抽樣信號(hào)的傅里葉變換,引入抽樣定理。5傅里葉生平1768年生于法國1807年提出“任何周期信號(hào)都可用正弦函數(shù)級(jí)數(shù)表示”1829年狄里赫利第一個(gè)給出收斂條件拉格朗日反對(duì)發(fā)表1822
4、年首次發(fā)表在“熱的分析理論”一書中6傅里葉(JeanBaptiseJosephFourier1768~1830)法國數(shù)學(xué)家。1768年3月21日生于奧塞爾,1830年5月16日卒于巴黎。1795年曾在巴黎綜合工科學(xué)校任講師。1798年隨拿破侖遠(yuǎn)征埃及,當(dāng)過埃及學(xué)院的秘書。1801年回法國,又任伊澤爾地區(qū)的行政長(zhǎng)官。1817年傅里葉被選為科學(xué)院院士,并于1822年成為科學(xué)院的終身秘書。1827年又當(dāng)選為法蘭西學(xué)院院士。在十八世紀(jì)中期,是否有用信號(hào)都能用復(fù)指數(shù)的線性組合來表示這個(gè)問題曾是激烈爭(zhēng)論的主題。1753年,D.伯努利
5、曾聲稱一根弦的實(shí)際運(yùn)動(dòng)都可以用正弦振蕩模的線性組合來表示,但他沒有繼續(xù)從數(shù)學(xué)上深入探求下去;后來歐拉本人也拋棄了三角級(jí)數(shù)的想法。7在1759年拉格朗日(J.L.Lagrange)表示不可能用三角級(jí)數(shù)來表示一個(gè)具有間斷點(diǎn)的函數(shù),因此三角級(jí)數(shù)的應(yīng)用非常有限。正是在這種多少有些敵對(duì)和懷疑的處境下,傅里葉約于半個(gè)世紀(jì)后提出了他自己的想法。傅里葉很早就開始并一生堅(jiān)持不渝地從事熱學(xué)研究,1807年他在向法國科學(xué)院呈交一篇關(guān)于熱傳導(dǎo)問題的論文中宣布了任一函數(shù)都能夠展成三角函數(shù)的無窮級(jí)數(shù)。這篇論文經(jīng)J.-L.拉格朗日,P.-S.拉普拉斯
6、,A.-M.勒讓德等著名數(shù)學(xué)家審查,由于文中初始溫度展開為三角級(jí)數(shù)的提法與拉格朗日關(guān)于三角級(jí)數(shù)的觀點(diǎn)相矛盾,而遭拒絕。由于拉格朗日的強(qiáng)烈反對(duì),傅里葉的論文從未公開露面過。為了使他的研究成果能讓法蘭西研究院接受并發(fā)表,在經(jīng)過了幾次其他的嘗試以后,傅里葉才把他的成果以另一種方式出現(xiàn)在"熱的分析理論"這本書中。這本書出版于1822年,也即比他首次在法蘭西研究院宣讀他的研究成果時(shí)晚十五年。這本書已成為數(shù)學(xué)史上一部經(jīng)典性的文獻(xiàn),其中基本上包括了他的數(shù)學(xué)思想和數(shù)學(xué)成就。8書中處理了各種邊界條件下的熱傳導(dǎo)問題,以系統(tǒng)地運(yùn)用三角級(jí)數(shù)和三
7、角積分而著稱,他的學(xué)生以后把它們稱為傅里葉級(jí)數(shù)和傅里葉積分,這個(gè)名稱一直沿用至今。傅里葉在書中斷言:“任意”函數(shù)(實(shí)際上要滿足一定的條件,例如分段單調(diào))都可以展開成三角級(jí)數(shù),他列舉大量函數(shù)并運(yùn)用圖形來說明函數(shù)的這種級(jí)數(shù)表示的普遍性,但是沒有給出明確的條件和完整的證明。傅里葉的創(chuàng)造性工作為偏微分方程的邊值問題提供了基本的求解方法-傅里葉級(jí)數(shù)法,從而極大地推動(dòng)了微分方程理論的發(fā)展,特別是數(shù)學(xué)物理等應(yīng)用數(shù)學(xué)的發(fā)展;其次,傅里葉級(jí)數(shù)拓廣了函數(shù)概念,從而極大地推動(dòng)了函數(shù)論的研究,其影響還擴(kuò)及純粹數(shù)學(xué)的其他領(lǐng)域。傅里葉深信數(shù)學(xué)是解決
8、實(shí)際問題的最卓越的工具,并且認(rèn)為“對(duì)自然界的深刻研究是數(shù)學(xué)最富饒的源泉。”這一見解已成為數(shù)學(xué)史上強(qiáng)調(diào)通過實(shí)際應(yīng)用發(fā)展數(shù)學(xué)的一種代表性的觀點(diǎn)。9傅立葉的兩個(gè)最主要的貢獻(xiàn)——“周期信號(hào)都可表示為諧波關(guān)系的正弦信號(hào)的加權(quán)和”——傅里葉的第一個(gè)主要論點(diǎn)“非周期信號(hào)都可用正弦信號(hào)的加權(quán)積分表示”——傅里葉的第二個(gè)主要論點(diǎn)10域