資源描述:
《基于低秩矩陣恢復(fù)的移動(dòng)WSN節(jié)點(diǎn)軌跡擬合研究.pdf》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫(kù)。
1、第27卷第10期傳感技術(shù)學(xué)報(bào)Vol?27No?102014年10月CHINESEJOURNALOFSENSORSANDACTUATORSOct.2014ResearchonPathFittingofMobileNodesinMobile?WSNBasedonLow ̄RankMatrixRecovery12111?FENGXu?XUXiaofeng?LIANGXuan?LUYafang?WANJiangwen(1.SchoolofInstrumentationScienceandOpto ̄ElectronicsEngineering?BeihangUniversity?Beiji
2、ng100191?China?2.ScienceandTechnologyonCommunicationInformationSecurityControlLaboratory?JiaxingZhejiang314033?China)Abstract:Updatingandmanagingthepositionandpathinformationofmobilesensornodes?whichisoneofthemainfeaturesofmobilewirelesssensornetwork(MWSN)system.Frequentlytransferringthepath
3、informationwillincreasetheenergyconsumptionofMWSN.Inordertoreducethetransmissionofinformation?weapplythealgorithmbasedonlow ̄rankmatrixrecoveryonpathfittingtorecoverpathinformationaftersamplingprocess.ThealgorithmrelaxestherankofmatrixbyreplacingitwiththeFrobeniusnormtosimplifythenon ̄convexop
4、timizationproblem?turnstheproblemintoanon ̄constrainedproblem?andusesanalternatingleastsquaresproceduretofindthesolution.Experi ̄mentresultsshowthatthealgorithmachievesgoodaccuracyonpathfittingandreducesthetransmissionofpathin ̄formationinthemeanwhile.Keywords:mobilewirelesssensornetwork?pathfi
5、tting?compressivesensing?low ̄rankmatrixrecoveryEEACC:7230?6150Pdoi:10.3969/j.issn.1004-1699.2014.10.018?基于低秩矩陣恢復(fù)的移動(dòng)WSN節(jié)點(diǎn)軌跡擬合研究12111?馮緒?許小豐?梁璇?陸亞芳?萬(wàn)江文(1.北京航空航天大學(xué)儀器科學(xué)與光電工程學(xué)院?北京100191?2.通信信息控制和安全技術(shù)重點(diǎn)實(shí)驗(yàn)室?浙江嘉興314033)摘要:對(duì)傳感節(jié)點(diǎn)的位置和軌跡信息進(jìn)行更新和管理?是傳感節(jié)點(diǎn)可移動(dòng)的無(wú)線傳感器網(wǎng)絡(luò)系統(tǒng)的主要特征?傳感節(jié)點(diǎn)的位置和軌跡信息頻繁傳輸會(huì)增加網(wǎng)絡(luò)的能量消耗?為了降低信息
6、的傳輸量?對(duì)信息進(jìn)行采樣?并通過(guò)擬合傳感器節(jié)點(diǎn)的移動(dòng)軌跡恢復(fù)原始軌跡信息?為了進(jìn)一步提高擬合準(zhǔn)確度?將壓縮感知理論應(yīng)用于軌跡擬合中?該算法對(duì)非凸最優(yōu)化問(wèn)題進(jìn)行松弛?將矩陣的秩松弛到矩陣的Frobenius范數(shù)?并轉(zhuǎn)化為非約束優(yōu)化問(wèn)題?然后采用最小二乘法對(duì)目標(biāo)函數(shù)進(jìn)行迭代以求得最優(yōu)解?仿真實(shí)驗(yàn)結(jié)果表明?算法能夠較好地?cái)M合傳感節(jié)點(diǎn)的移動(dòng)軌跡?能顯著減少傳感節(jié)點(diǎn)位置和軌跡信息的發(fā)送量?關(guān)鍵詞:移動(dòng)無(wú)線傳感器網(wǎng)絡(luò)?軌跡擬合?壓縮感知?低秩矩陣恢復(fù)中圖分類號(hào):TP393文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1004-1699(2014)10-1401-05近年來(lái)?傳感節(jié)點(diǎn)可以移動(dòng)的無(wú)線傳感器網(wǎng)絡(luò)聯(lián)盟協(xié)
7、同任務(wù)分配機(jī)制?實(shí)現(xiàn)了對(duì)WSN中多目標(biāo)的WSN(WirelessSensorNetwork)引起了人們?cè)絹?lái)越廣追蹤任務(wù)?文獻(xiàn)[5]將網(wǎng)絡(luò)分為多個(gè)網(wǎng)格?通過(guò)計(jì)算泛的關(guān)注?很多情況下?移動(dòng)無(wú)線傳感器網(wǎng)絡(luò)能夠有節(jié)點(diǎn)在每個(gè)網(wǎng)格出現(xiàn)的概率來(lái)預(yù)測(cè)移動(dòng)節(jié)點(diǎn)的軌[1-3]效提高網(wǎng)絡(luò)的可靠性和能量效率?在復(fù)雜多變跡?文獻(xiàn)[4-5]均利用了網(wǎng)絡(luò)中固定的已知坐標(biāo)的的應(yīng)用環(huán)境中?移動(dòng)無(wú)線傳感器網(wǎng)絡(luò)需要結(jié)合節(jié)點(diǎn)的節(jié)點(diǎn)來(lái)實(shí)現(xiàn)對(duì)移動(dòng)節(jié)點(diǎn)的跟蹤?其方法不能適用于實(shí)際移動(dòng)情況對(duì)數(shù)據(jù)進(jìn)行采集和分析?傳感節(jié)點(diǎn)的位節(jié)點(diǎn)都移動(dòng)的無(wú)線