資源描述:
《高考數(shù)列常考題型歸納總結(jié)匯總.doc》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫。
1、高考數(shù)列常考題型歸納總結(jié)類型1an+1=an+f(n解法:把原遞推公式轉(zhuǎn)化為an+1-an=f(n,利用累加法(逐差相加法求解。例:已知數(shù)列{an}滿足a1=解:由條件知:an+1-an=12,an+1=an+1=11n+n2,求an。-1n+1n+n2n(n+1=1n分別令n=1,2,3,??????,(n-1,代入上式得(n-1個(gè)等式累加之,即(a2-a1+(a3-a2+(a4-a3+??????+(an-an-1=(1-12+(12-13+(1n13-14+??????+(1n-1-1n所以an-a
2、1=1-a1=1212+1-1n=32-1n,∴an=類型2an+1=f(nan解法:把原遞推公式轉(zhuǎn)化為23an+1an=f(n,利用累乘法(逐商相乘法求解。nn+1例:已知數(shù)列{an}滿足a1=解:由條件知之,即a2a1?a3a2?a4a323,an+1=an,求an。an+1an=nn+1,分別令n=1,2,3,??????,(n-1,代入上式得(n-1個(gè)等式累乘????????anan-123n=12?23?34????????n-1n?ana1=1n又a1=,∴an=例:已知a1=3,an+1=解
3、:an=3(n-1-13(n-1+23n-43n-13n-13n+2an(n≥1,求an。?3(n-2-13(n-2+27?4?????3?2-13?2+26?3-13+2a1=?3n-3n-52??3=85n-3。1變式:(2004,全國I,理15.)已知數(shù)列{an},滿足a1=1,an=a1+2a2+3a3+???+(n-1an-1(n≥2,則{an}的通項(xiàng)an=??1?___n=1n≥2解:由已知,得an+1=a1+2a2+3a3+???+(n-1an-1+nan,用此式減去已知式,得當(dāng)n≥2時(shí),a
4、n+1-an=nan,即an+1=(n+1an,又a2=a1=1,∴a1=1,a2a1=1,a3a2=3,a4a3=4,???,anan-1=n,將以上n個(gè)式子相乘,得an=n!2(n≥2類型3an+1=pan+q(其中p,q均為常數(shù),(pq(p-1≠0)。解法(待定系數(shù)法):把原遞推公式轉(zhuǎn)化為:an+1-t=p(an-t,其中t=換元法轉(zhuǎn)化為等比數(shù)列求解。例:已知數(shù)列{an}中,a1=1,an+1=2an+3,求an.解:設(shè)遞推公式an+1=2an+3可以轉(zhuǎn)化為an+1-t=2(an-t即an+1=2a
5、n-t?t=-3.故遞推公式為an+1+3=2(an+3,令bn=an+3,則b1=a1+3=4,且bn+1bn=an+1+3an+3=2.q1-p,再利用n-1n+1=2所以{bn}是以b1=4為首項(xiàng),2為公比的等比數(shù)列,則bn=4?2,所以an=2n+1-3.變式:(2006,重慶,文,14)在數(shù)列{an}中,若a1=1,an+1=2an+3(n≥1,則該數(shù)列的通項(xiàng)an=_______________(key:an=2n+1-3)變式:(2006.福建.理22.本小題滿分14分)已知數(shù)列{an}滿足a
6、1=1,an+1=2an+1(n∈N*.(I)求數(shù)列{an}的通項(xiàng)公式;(II)若數(shù)列{bn}滿足4b-14b12-14bn-1=(an+1n(n∈N,證明:數(shù)列{bn}是等差數(shù)列;b*(Ⅲ)證明:n12-137、.∴4(k1+k2+...+kn-n=2nkn.∴2[(b1+b2+...+bn-n]=nbn,2[(b1+b2+...+bn+bn+1-(n+1]=(n+1bn+1.②-①,得2(bn+1-1=(n+1bn+1-nbn,即(n-1bn+1-nbn+2=0,nbn+2-(n+1bn+1+2=0.③-④,得nbn+2-2nbn+1+nbn=0,即bn+2-2bn+1+bn=0,∴bn+2-bn+1=bn+1-bn(n∈N*,∴{bn}是等差數(shù)列①②證法二:同證法一,得(n-1bn+1-nbn+2=0令n=1
8、,得b1=2.設(shè)b2=2+d(d∈R,下面用數(shù)學(xué)歸納法證明bn=2+(n-1d.(1)當(dāng)n=1,2時(shí),等式成立(2)假設(shè)當(dāng)n=k(k≥2時(shí),bk=2+(k-1d,那么bk+1=kk-1bk-2=k[2+(k-1d]-2k-1k-1k-1這就是說,當(dāng)n=k+1=2+[(k+1-1]d.根據(jù)(1)和(2),可知bn=2+(n-1d對(duì)任何n∈N*bn+1-bn=d,∴{bn}(III)證明:akak+1=2-12k+1k-1=2-1