資源描述:
《奧數(shù)常見(jiàn)裂項(xiàng)法、經(jīng)典裂項(xiàng)試題和裂項(xiàng)公式.pdf》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫(kù)。
1、奧數(shù)常見(jiàn)裂項(xiàng)法、經(jīng)典裂項(xiàng)試題和裂項(xiàng)公式1、abcabc=abc×10012、ababab=ab×1010113、對(duì)于分母可以寫(xiě)作兩個(gè)因數(shù)乘積的分?jǐn)?shù),即形式的,這里我們把較小的a×b數(shù)寫(xiě)在前面,即a<b,那么有:1111=(?)a×bb?aab????4、對(duì)于分母上為3個(gè)或4個(gè)連續(xù)自然數(shù)乘積形式的分?jǐn)?shù),即有:11?11?=?????n×(n+1)×(n+2)2?n×(n+1)(n+1)×(n+2)?11?11?=?????n×(n+1)×(n+2)×(n+3)3?n×(n+1)×(n+2)(n+1)×(n+2)×(n+3)?a+bab11
2、5、=+=+???a×ba×ba×bba???2222a+babab6、=+=+a×ba×ba×bba???17、?1×2+2×3+3×4+......+(n?1)×n=(n?1)n(n+1)3????18、1×2×3+2×3×4+3×4×5+......+(n?2)×(n?1)×n=(n?2)(n?1)n(n+1)4119、n(n+1)=n(n+1)(n+2)?(n?1)n(n+1)331110、n(n+1)(n+2)=n(n+1)(n+2)(n+3)?(n?1)n(n+1)(n+2)4411、n×n!=(n+1)!?n!111111
3、n12.求和:S=++++......+=n1×22×33×44×5n(n+1)n+1證:1111111111nS=(1?)+(?)+(?)+(?)+?+(?)=1?=n2233445nn+1n+1n+111111n13.求和:S=++++?+=n1×33×55×77×9(2n?1)(2n+1)2n+1證:1111111111111nS=(1?)+(?)+(?)+?+(?)=(1?)=n2323525722n?12n+122n+12n+11111n14.求和:S=+++?+=n1×44×77×10(3n?2)(3n+1)3n+11111
4、1111111證:S=(1?)+(?)+(?)+?+(?)n34347371033n?23n+111n=(1?)=33n+13n+111111111115.求和:S=++++?+=(1+??)n1×32×43×54×6n(n+2)32n+1n+211111111111111證:S=(1?)+(?)+(?)+(?)+?+(?)n232242352462n?1n+11111111+(?)=(1+???)2nn+232n+1n+216.求和:11111?11?S=+++?+=???n??1×2×32×3×43×4×5n(n+1)(n+2)2?
5、2(n+1)(n+2)?21111證:因?yàn)?[?],n(n+1)(n+2)2n(n+1)(n+1)(n+2)111111111∴S=(?)+(?)+?+[?]n21×22×322×33×42n(n+1)(n+1)(n+2)111=[?]22(n+1)(n+2)n(n+1)17、1+2+3?n=2218、1+2+3+?+(n?1)+n+(n?1)+?+3+2+1=n219、1+3+5+7?+(2n?1)=n222n(n+1)(2n+1)20、1+2+?+n=622222n(2n+1)(2n?1)n×(4n?1)21、1+3+5+?+(2n
6、?1)==332()23332nn+122、1+2+?+n=(1+2+?n)=42223、a?b=(a+b)(a?b)22224、(a±b)=a±2ab+b【典型例題】1111例1.計(jì)算:+++……+1985×19861986×19871987×19881994×1995111+++1995×19961996×19971997分析與解答:111=?1985×198619851986111=?1986×198719861987111=?1987×198819871988……111=?1994×1995199419953111=?1995×
7、199619951996111=?1996×199719961997上面12個(gè)式子的右面相加時(shí),很容易看出有許多項(xiàng)一加一減正好相互抵消變?yōu)?,這一來(lái)問(wèn)題解起來(lái)就十分方便了。11111+++…++1985×19861986×19871987×19881995×19961996×19971+1997111111111=?+?+?+……+?+198519861986198719871988199519961996111?+=199719971985像這樣在計(jì)算分?jǐn)?shù)的加、減時(shí),先將其中的一些分?jǐn)?shù)做適當(dāng)?shù)牟鸱?,使得其中一部分分?jǐn)?shù)可以相互抵消,從而
8、使計(jì)算簡(jiǎn)化的方法,我們稱為裂項(xiàng)法。1111例2.計(jì)算:+++…+11+21+2+31+2+3+…+100公式的變式12=1+2+…+nn×(n?1)當(dāng)n分別取1,2,3,……,100時(shí),就有12=11×21