資源描述:
《高三數(shù)學(xué)大一輪復(fù)習(xí) 函數(shù)模型及其應(yīng)用學(xué)案 理 新人教A版.doc》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、函數(shù)模型及其應(yīng)用導(dǎo)學(xué)目標:1.了解指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)的增長特征.知道直線上升、指數(shù)增長、對數(shù)增長等不同函數(shù)類型增長的含義.2.了解函數(shù)模型(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等在社會生活中普遍使用的函數(shù)模型)的廣泛應(yīng)用.自主梳理1.三種增長型函數(shù)模型的圖象與性質(zhì)函數(shù)性質(zhì)y=ax(a>1)y=logax(a>1)y=xn(n>0)在(0,+∞)上的單調(diào)性增長速度圖象的變化隨x增大逐漸表現(xiàn)為與____平行隨x增大逐漸表現(xiàn)為與____平行隨n值變化而不同2.三種增長型函數(shù)之間增長速度的比較(1)指數(shù)函數(shù)y=ax(a>1)與冪函數(shù)y=xn(n>0
2、)在區(qū)間(0,+∞)上,無論n比a大多少,盡管在x的一定范圍內(nèi)ax會小于xn,但由于y=ax的增長速度________y=xn的增長速度,因而總存在一個x0,當(dāng)x>x0時有________.(2)對數(shù)函數(shù)y=logax(a>1)與冪函數(shù)y=xn(n>0)對數(shù)函數(shù)y=logax(a>1)的增長速度,不論a與n值的大小如何總會________y=xn的增長速度,因而在定義域內(nèi)總存在一個實數(shù)x0,使x>x0時有____________.由(1)(2)可以看出三種增長型的函數(shù)盡管均為增函數(shù),但它們的增長速度不同,且不在同一個檔次上,因此在(0,+∞)上,總會
3、存在一個x0,使x>x0時有_____________________.3.函數(shù)模型的應(yīng)用實例的基本題型(1)給定函數(shù)模型解決實際問題;(2)建立確定性的函數(shù)模型解決問題;(3)建立擬合函數(shù)模型解決實際問題.4.函數(shù)建模的基本程序自我檢測1.下列函數(shù)中隨x的增大而增大速度最快的是( )A.v=exB.v=100lnxC.v=x100D.v=100×2x2.某公司在甲、乙兩地銷售一種品牌車,利潤(單位:萬元)分別為L1=5.06x-0.15x2和L2=2x,其中x為銷售量(單位:輛).若該公司在這兩地共銷售15輛車,則能獲得的最大利潤為( )A.4
4、5.606B.45.6C.45.56D.45.513.(2010·陜西)某學(xué)校要召開學(xué)生代表大會,規(guī)定各班每10人推選一名代表,當(dāng)各班人數(shù)除以10的余數(shù)大于6時再增選一名代表.那么,各班可推選代表人數(shù)y與該班人數(shù)x之間的函數(shù)關(guān)系用取整函數(shù)y=[x]([x]表示不大于x的最大整數(shù))可以表示為( )A.y=[]B.y=[]C.y=[]D.y=[]4.(2011·湘潭月考)某工廠6年來生產(chǎn)某種產(chǎn)品的情況是:前三年年產(chǎn)量的增長速度越來越快,后三年年產(chǎn)量保持不變,則該廠6年來這種產(chǎn)品的總產(chǎn)量C與時間t(年)的函數(shù)關(guān)系圖象正確的是( )5.一個人喝了少量酒后
5、,血液中的酒精含量迅速上升到0.3mg/mL,在停止喝酒后,血液中的酒精含量以每小時25%的速度減少,為了保障交通安全,某地根據(jù)《道路交通安全法》規(guī)定:駕駛員血液中的酒精含量不得超過0.09mg/mL,那么,一個喝了少量酒后的駕駛員,至少經(jīng)過________小時,才能開車?(精確到1小時)探究點一 一次函數(shù)、二次函數(shù)模型例1 (2011·陽江模擬)某化工廠引進一條先進生產(chǎn)線生產(chǎn)某種化工產(chǎn)品,其生產(chǎn)的總成本y(萬元)與年產(chǎn)量x(噸)之間的函數(shù)關(guān)系式可以近似地表示為y=-48x+8000,已知此生產(chǎn)線年產(chǎn)量最大為210噸.(1)求年產(chǎn)量為多少噸時,生產(chǎn)每
6、噸產(chǎn)品的平均成本最低,并求最低成本;(2)若每噸產(chǎn)品平均出廠價為40萬元,那么當(dāng)年產(chǎn)量為多少噸時,可以獲得最大利潤?最大利潤是多少?變式遷移1 某租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時,可全部租出.當(dāng)每輛車的月租金每增加50元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.(1)當(dāng)每輛車的月租金定為3600元時,能租出多少輛車?(2)當(dāng)每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?探究點二 分段函數(shù)模型例2 據(jù)氣象中心觀察和預(yù)測:發(fā)生于M地的沙塵暴一直向正南方
7、向移動,其移動速度v(km/h)與時間t(h)的函數(shù)圖象如圖所示,過線段OC上一點T(t,0)作橫軸的垂線l,梯形OABC在直線l左側(cè)部分的面積即為t(h)內(nèi)沙塵暴所經(jīng)過的路程s(km).(1)當(dāng)t=4時,求s的值;(2)將s隨t變化的規(guī)律用數(shù)學(xué)關(guān)系式表示出來;(3)若N城位于M地正南方向,且距M地650km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發(fā)生后多長時間它將侵襲到N城?如果不會,請說明理由.變式遷移2 某市居民自來水收費標準如下:每戶每月用水不超過4噸時,每噸為1.80元,當(dāng)用水超過4噸時,超過部分每噸3.00元.某月甲、乙兩戶共
8、交水費y元,已知甲、乙兩戶該月用水量分別為5x,3x(噸).(1)求y關(guān)于x的函數(shù);(2)若甲、乙兩戶該月共