高考數(shù)學(xué)復(fù)習(xí)課時提能演練(七十五) 選修4-2_2.pdf

高考數(shù)學(xué)復(fù)習(xí)課時提能演練(七十五) 選修4-2_2.pdf

ID:56883433

大?。?48.20 KB

頁數(shù):7頁

時間:2020-07-19

高考數(shù)學(xué)復(fù)習(xí)課時提能演練(七十五)  選修4-2_2.pdf_第1頁
高考數(shù)學(xué)復(fù)習(xí)課時提能演練(七十五)  選修4-2_2.pdf_第2頁
高考數(shù)學(xué)復(fù)習(xí)課時提能演練(七十五)  選修4-2_2.pdf_第3頁
高考數(shù)學(xué)復(fù)習(xí)課時提能演練(七十五)  選修4-2_2.pdf_第4頁
高考數(shù)學(xué)復(fù)習(xí)課時提能演練(七十五)  選修4-2_2.pdf_第5頁
資源描述:

《高考數(shù)學(xué)復(fù)習(xí)課時提能演練(七十五) 選修4-2_2.pdf》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫

1、課時提能演練(七十五)?11???34?1.已知??M=??,求矩陣M.?02???14??1?2?2.已知A=??,?2?1?(1)求逆矩陣A-1;?1?(2)若矩陣X滿足AX=??,求矩陣X.??1??1?1??01??2?1?3.已知B???,C???,且(AB)C=??,求矩陣A.??23??10??3?2?4.如圖:平行四邊形OABC在變換T的作用下變成了矩形OA′B′C′,求變換T所對應(yīng)的矩陣M.?1a?5.(2011·常州模擬)已知a,b∈R,矩陣M=??,如果矩陣M對應(yīng)的變換將直線?b2?x+2y=1變換為自身,求M的逆矩陣.?21?

2、?1?2?6.(2012·鹽城模擬)已知矩陣A???,B???,??12??01?(1)計算AB;(2)若矩陣B把直線l:x+y+2=0變?yōu)橹本€l′,求直線l′的方程.?a0?7.(2011·福建高考)設(shè)矩陣M=??(其中a>0,b>0).?0b?(1)若a=2,b=3,求矩陣M的逆矩陣M-1;(2)若曲線C:x2+y2=1在矩陣M所對應(yīng)的線性變換作用下得到曲線C′:2x2?y?1,求a,b的值.48.求曲線2x2-2xy+1=0在矩陣MN對應(yīng)的變換作用下得到的曲線方程,其中?10??10?M???,N???.?02???11??21?9.(2012

3、·宿遷模擬)已知矩陣A=??將直線l:x+y-1=0變換成直線l′.??13?(1)求直線l′的方程;(2)判斷矩陣A是否可逆?若可逆,求出矩陣A的逆矩陣A-1;若不可逆,請說明理由.?4m?10.(2012·莆田模擬)直線l1:x=-4先經(jīng)過矩陣A=??作用,再經(jīng)過矩陣B=?n?4??11???作用,變?yōu)橹本€l2:2x-y=4,求矩陣A.?0?1?答案解析?11?1.【解析】令A(yù)=??,∴

4、A

5、=1×2-1×0=2,?02??1??1???12∴A???.?1??0??2??1??5???34??1?2???34???22??1∴M?A??????

6、????.??14??1???14??1??0???2??2??2?2.【解析】(1)

7、A

8、=1×(-1)-(-2)×2=3,?12?????133∴A???.?21?????33??1?(2)∵AX=??,??1??12??1???33??1???1??1∴X=A??????????.??1??21???1???1?????33??1?1??01???11?3.【解析】∵BC=???????.??23??10??3?2?又∵(AB)C=A(BC),??11??2?1???11?∴A?????,令M=??,?3?2??3?2??3?2?∴

9、M

10、=(-

11、1)×(-2)-3×1=-1≠0,?1?21??2?1??21??11?∴M???,∴A=???????.?31??3?2??31??01?4.【解題指南】從平行四邊形到矩形實質(zhì)經(jīng)歷了兩次變換,一次為旋轉(zhuǎn)變換,一次為切變變換,分別確定出其對應(yīng)的矩陣后相乘,即得變換T對應(yīng)的矩陣.【解析】由平行四邊形OABC變換成矩形OA′B′C′,可以看成先將平行四邊形OABC繞著O點順時針旋轉(zhuǎn)90°,得到平行四邊形OA″B″C″,然后再將平行四邊形OA″B″C″作切變變換得矩形OA′B′C′.?cos(?90?)?sin(?90?)??01?故旋轉(zhuǎn)矩陣為:?????

12、,?sin(?90?)cos(?90?)???10??x??x???x?y??1?1??x?切變變換?????????????,?y??y???y??01??y??1?1?∴切變矩陣為??,?01??1?1??01??11?∴矩陣M=???????.?01???10???10??x??x0?5.【解析】設(shè)??在M的變換下得到??,?y??y0??1a??x??x?ay??x0?x?ay則???????,∴?,?b2??y??bx?2y??y?bx?2y0由題意,得(x+ay)+2(bx+2y)=1,即(1+2b)x+(a+4)y=1.?1?2b?1?

13、a??2∴?,∴?,?a?4?2?b?0?22????11?∴M=?1?2?,∴M?1?22??1?.?????02??01??0????2??22??21??1?2??2?3?6.【解析】(1)AB=???????.??12??01???14?(2)任取直線l上一點P(x,y),P經(jīng)矩陣B變換后為P′(x′,y′),?x???1?2??x??x?2y?則???????????y???01??y??y??x??x?2y?x?x??2y?∴?,∴?.?y??y?y?y?由于P(x,y)在直線l上,所以代入x+y+2=0,得x′+2y′+y′+2=0,∴

14、x′+3y′+2=0,∴直線l′的方程為x+3y+2=0.【變式備選】試求曲線y=sinx在矩陣MN變換下的

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。