資源描述:
《相似三角形動(dòng)點(diǎn)問題課件.ppt》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫(kù)。
1、相似三角形中的動(dòng)點(diǎn)問題1、如圖△ABC中,D、E分別是AB、AC上的點(diǎn),在下列條件下:①∠AED=∠B;②AD:AC=AE:AB;③DE:BC=AD:AC.能判定△ADE與ACB相似的是( ?。〢.①②B.①③C.①②③D.①A回顧舊知:2.如圖,在△ABC中,AB=24,AC=18,D是AC上一點(diǎn),AD=12.在AB上取一點(diǎn)E.使A、D、E三點(diǎn)組成的三角形與△ABC相似,則AE的長(zhǎng)為( ?。〢.16B.14C.16或14D.16或9DD點(diǎn)是△ABC的邊AC上的一點(diǎn),E點(diǎn)能夠在AB和BC上運(yùn)動(dòng)。當(dāng)E點(diǎn)在什么位置時(shí),
2、點(diǎn)D、點(diǎn)E和△ABC的一個(gè)頂點(diǎn)組成的小三角形與△ABC相似。問:這樣的三角形可以畫幾個(gè)?畫出DE,并說明理由。ABC(3)DE1E2E3E4合作探究如圖,在△ABC中,AB=10cm,BC=20cm,AC=16cm,點(diǎn)P從點(diǎn)A開始沿A---B邊向B點(diǎn)以2cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿B---C邊向點(diǎn)C以4cm/s的速度移動(dòng),同時(shí)出發(fā),到端點(diǎn)則停止,問經(jīng)過幾秒鐘,△PBQ與△ABC相似?典例分析..ABCPQ解:設(shè)經(jīng)過t秒后,△PBQ與△ABC相似,由已知可得:AP=2tcm,BP=(10-2t)cm,BQ=4
3、tcm,且P,Q兩點(diǎn)運(yùn)動(dòng)的時(shí)間都為5s.∵∠B=∠B∴當(dāng)或時(shí)兩個(gè)三角形相似,即或解得t=2.5或t=1經(jīng)檢驗(yàn)2.5s或1s都在5s之內(nèi),∴經(jīng)過2.5s或1s時(shí),△PBQ與△ABC相似。歸納小結(jié):通過上面的例題,動(dòng)點(diǎn)形成相似三角形是由什么判定?由兩邊成比例且夾角相等。ABCDEABCDE注意:1、先把動(dòng)態(tài)的線段用含t的式子表示再列出方程2、兩個(gè)比例式只需要調(diào)換分母3、要檢驗(yàn)得到的答案是否在取值范圍之內(nèi)1、在典例分析中,如果將Q點(diǎn)速度改為10cm/s,其余條件不變,則t為多少時(shí)兩個(gè)三角形相似?舉一反三ABC2、在典例分
4、析中,若點(diǎn)P從點(diǎn)B向A點(diǎn)移動(dòng),點(diǎn)Q從點(diǎn)C向移動(dòng),速度不變,同時(shí)出發(fā),問經(jīng)過幾秒鐘,△PAQ與△ABC相似.(列出方程即可)ABC1、已知矩形ABCD,長(zhǎng)BC=12cm,寬AB=8cm,P、Q分別是AB、BC上運(yùn)動(dòng)的兩點(diǎn).若P自點(diǎn)A出發(fā),以1cm/s的速度沿AB方向運(yùn)動(dòng),同時(shí),Q自點(diǎn)B出發(fā)以2cm/s的速度沿BC方向運(yùn)動(dòng),問經(jīng)過幾秒,以P、B、Q為頂點(diǎn)的三角形與△BDC相似?當(dāng)堂檢測(cè)2、如圖所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7cm,AD=2cm,BC=3cm,P點(diǎn)以1cm/s的速度從A往B運(yùn)動(dòng),經(jīng)
5、過幾秒,使得以P,A,D為頂點(diǎn)的三角形與以P,B,C為頂點(diǎn)的三角形相似.如圖,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,點(diǎn)P從點(diǎn)A出發(fā)沿AB方向向點(diǎn)B運(yùn)動(dòng),速度為1cm/s,同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)沿B→C→A方向向點(diǎn)A運(yùn)動(dòng),速度為2cm/s,當(dāng)一個(gè)運(yùn)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)運(yùn)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng)。當(dāng)運(yùn)動(dòng)過程中,以點(diǎn)B、P、Q為頂點(diǎn)的三角形與△ABC是否相似,如果相似請(qǐng)求出時(shí)間t,如果不相似請(qǐng)說明理由;拓展提升再見