分?jǐn)?shù)階微分方程迭代方法

分?jǐn)?shù)階微分方程迭代方法

ID:27103377

大?。?.86 MB

頁數(shù):41頁

時(shí)間:2018-12-01

分?jǐn)?shù)階微分方程迭代方法_第1頁
分?jǐn)?shù)階微分方程迭代方法_第2頁
分?jǐn)?shù)階微分方程迭代方法_第3頁
分?jǐn)?shù)階微分方程迭代方法_第4頁
分?jǐn)?shù)階微分方程迭代方法_第5頁
資源描述:

《分?jǐn)?shù)階微分方程迭代方法》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫

1、2009–4–30AnIterativeMethodforFractionalOrderDi?erentialEquationsCandidateSupervisorandRankYapingZhangProfessorXuenianCaoCollegeProgramSpecializationDegreeUniversityDateMathematicsandComputationalScienceTheComputationalMathematicsNumericalMethodsofFraction

2、alDi?erentialEquationsMasterofScienceXiangTanUniversityApril30th,2009NIM)Daftardar?GejjiBagley?Torvik-(ADM)Jafari(VIM)I(HPM)(AdomianAbstractFractionaldi?erentialequationscane?ectivelysimulatemanyscienti?cphenomenaincontrollerstheory,?uidmechanics,biolog

3、y,andhasbeenusedwidelyinscienti?candengineering?eld.Inrecentyears,moreandmoreschol-arsresearchinfractionaldi?erentialequations,theytriedtoresolvefractionaldi?erentialequations,butmanyanalyticsolutionsoffractionaldi?erentialequationsareexpressedbycomplexseri

4、esorspecialfunctions,sothenumer-icalsolutionoffractionaldi?erentialequationsbecomesmoreimportant.Inthispaper,anewiterativemethod(NIM)proposedbyDaftarar-GejjiandJafariisappliedtosolvefractionalordinarydi?erentialequationsandfractionalpartialdi?erentialequati

5、ons.WeobtainthenumericalsolutionsoffractionalorderBagley-Torvikequation,nonlinearanomalousdi?usionequa-tion,linearandnonlineartime-spacefractionalreaction-di?usionequationsandfractionaltelegraphequation.Numericalresultsdemonstratethee?-ciencyofthisiterative

6、methodbycomparingseveralnumericalmethods,suchasAdomiandecompositionmethod(ADM),variationaliterationmethod(VIM)andhomotopyperturbationmethod(HPM).Keywords:Fractionalorderderivatives;Fractionalorderintegrals;Frac-tionalorderdi?erentialequations;Newiterativeme

7、thodII1§1.1§1.2...........................................................136§2.1(NIM).....................6§2.2.............................712§3.1NIM§3.2...........12.............................14-20§4.1NIM§4.2NIM--.........20.......2329§5.1N

8、IM§5.2...................29.............................303435i§1.1Leibniz(1695)(1823Euler(1730)Liouville(1832)Laplace(1812)Riemann(1847)Fourier(1822))AbelNutting([29])(1921)Gemant([25][26])(19

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時(shí)聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。