資源描述:
《Hodge theory and representation theory》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。
1、HODGETHEORYANDREPRESENTATIONTHEORYPHILLIPGRIFFITHSTenlecturestobegivenduringtheNSF/CBMSRegionalConferenceintheMathematicalSciencesatTCU,June18{22,2012.12TableofContentsIntroductionLecture1:Theclassicaltheory:PartILecture2:Theclassicaltheory:PartIILecture3:PolarizedHodgestructuresandMumford-Tategrou
2、psanddomainsLecture4:HodgerepresentationsandHodgedomainsLecture5:Discreteseriesandn-cohomologyAppendixtoLecture5:TheBorel-Weil-Bott(BWB)theoremLecture6:Geometryof
agdomains:PartIAppendixtoLecture6:TheIwasawadecompositionandapplicationsLecture7:Geometryof
agdomains:PartIIAppendixtoLecture7:TheBWBthe
3、oremrevisitedLecture8:PenrosetransformsinthetwomainexamplesAppendixtoLecture8:ProofsoftheresultsonPenrosetransformsforDandD0Lecture9:AutomorphiccohomologyAppendixItoLecture9:TheK-typesofTDLDSforSU(2;1)andSp(4)AppendixIItoLecture9:Schmid'sproofofthedegeneracyoftheHSSSforTDLDSintheSU(2;1)andSp(4)case
4、sLecture10:SelectedtopicsandpotentialareasforresearchAppendixtoLecture10:BoundarycomponentsandCarayol'sresultSelectedreferencesIndexNotationsusedinthetalksIntroduction3TheselecturesarecenteredaroundthesubjectsofHodgetheoryandrepresentationtheoryandtheirrelationship.Aunifyingthemeisthegeometryofhomo
5、geneouscomplexmanifolds.Oneobjectiveistopresent,inageneralcontext,someoftherecentworkofCarayol[C1],[C2],[C3].FinitedimensionalrepresentationtheoryinteractswithHodgetheorythroughtheuseofHodgerepresentationstoclassifythepossiblerealizationsofareductive,Q-algebraicgroupasaMumford-Tategroup.Thegeometry
6、ofhomogeneouscomplexmanifoldsentersthroughthestudyofMumford-TatedomainsandHodgedomains.InnitedimensionalrepresentationtheoryandthegeometryofhomogeneouscomplexmanifoldsinteractthroughtherealizationoftheHarish-Chandramodulesassociatedtodiscreteseriesrepresentations,especiallytheirlimits,ascohomology
7、groupsassociatedtohomogeneouslinebundles(workofSchmid).ItalsoentersthroughtheworkofCarayolonautomorphiccohomology,themostrecentofwhichinvolvestheHodgetheoryassociatedtoboundarycomponentsofMumford-Tatedomain