鎳鈷錳三元正極制備方法

鎳鈷錳三元正極制備方法

ID:12490618

大?。?07.64 KB

頁數(shù):10頁

時間:2018-07-17

鎳鈷錳三元正極制備方法_第1頁
鎳鈷錳三元正極制備方法_第2頁
鎳鈷錳三元正極制備方法_第3頁
鎳鈷錳三元正極制備方法_第4頁
鎳鈷錳三元正極制備方法_第5頁
資源描述:

《鎳鈷錳三元正極制備方法》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。

1、1鎳鈷錳三元正極材料結(jié)構(gòu)特征鎳鈷錳三元材料通??梢员硎緸椋篖iNixCoyMnzO2,其中x+y+z=1;依據(jù)3種元素的摩爾比(x∶y∶z比值)的不同,分別將其稱為不同的體系,如組成中鎳鈷錳摩爾比(x∶y∶z)為1∶1∶1的三元材料,簡稱為333型。摩爾比為5∶2∶3的體系,稱之為523體系等。333型、523型和811型等三元材料均屬于六方晶系的α-NaFeO2型層狀巖鹽結(jié)構(gòu),如圖1。鎳鈷錳三元材料中,3種元素的的主要價態(tài)分別是+2價、+3價和+4價,Ni為主要活性元素。其充電時的反應(yīng)及電荷轉(zhuǎn)移如圖2所示。一般來說,活性金屬成分含量越高,材料容量就越大,但當(dāng)鎳的含量過高時,會引起Ni2+

2、占據(jù)Li+位置,加劇了陽離子混排,從而導(dǎo)致容量降低。Co正好可以抑制陽離子混排,而且穩(wěn)定材料層狀結(jié)構(gòu);Mn4+不參與電化學(xué)反應(yīng),可提供安全性和穩(wěn)定性,同時降低成本。2鎳鈷錳三元正極材料制備技術(shù)的最新研究進展固相法和共沉淀法是傳統(tǒng)制備三元材料的主要方法,為了進一步改善三元材料電化學(xué)性能,在改進固相法和共沉法的同時,新的方法諸如溶膠凝膠、噴霧干燥、噴霧熱解、流變相、燃燒、熱聚合、模板、靜電紡絲、熔融鹽、離子交換、微波輔助、紅外線輔助、超聲波輔助等被提出。2.1固相法三元材料創(chuàng)始人OHZUKU最初就是采用固相法合成333材料,傳統(tǒng)固相法由于僅簡單采用機械混合,因此很難制備粒徑均一電化學(xué)性能穩(wěn)定的

3、三元材料。為此,HE等、LIU等采用低熔點的乙酸鎳鈷錳,在高于熔點溫度下焙燒,金屬乙酸鹽成流體態(tài),原料可以很好混合,并且原料中混入一定草酸以緩解團聚,制備出來的333,掃描電鏡圖(SEM)顯示其粒徑均勻分布在0.2~0.5μm左右,0.1C(3~4.3V)首圈放電比容量可達161mAh/g。TAN等采用采用納米棒作為錳源制備得到的333粒子粒徑均勻分布在150~200nm。固相法制得的材料的一次粒子粒徑大小在100~500nm,但由于高溫焙燒,一次納米粒子極易團聚成大小不一的二次粒子,因此,方法本身尚待進一步的改進。2.2共沉淀法共沉淀法是基于固相法而誕生的方法,它可以解決傳統(tǒng)固相法混料不

4、均和粒徑分布過寬等問題,通過控制原料濃度、滴加速度、攪拌速度、pH值以及反應(yīng)溫度可制備核殼結(jié)構(gòu)、球形、納米花等各種形貌且粒徑分布比較均一的三元材料。原料濃度、滴加速度、攪拌速度、pH值以及反應(yīng)溫度是制備高振實密度、粒徑分布均一三元材料的關(guān)鍵因素,LIANG等通過控制pH=11.2,絡(luò)合劑氨水濃度0.6mol/L,攪拌速度800r/min,T=50℃,制備得到振實密度達2.59g/cm3,粒徑均勻分布的622材料(圖3),0.1C(2.8~4.3V)循環(huán)100圈,容量保持率高達94.7%。鑒于811三元材料具有高比容量(可達200mAh/g,2.8~4.3V),424三元材料則可提供優(yōu)異的結(jié)

5、構(gòu)和熱穩(wěn)定性的特點。有研究者試圖合成具有核殼結(jié)構(gòu)的(核為811,殼層l為424)三元材料,HOU等采用分布沉淀,先往連續(xù)攪拌反應(yīng)釜(CSTR)中泵入8∶1∶1(鎳鈷錳比例)的原料,待811核形成后在泵入鎳鈷錳比例為1∶1∶1的原料溶液,形成第一層殼層,然后再泵入組成為4∶2∶2的原溶液,最終制備得到核組成為811,具有殼組成為333、424的雙層殼層的循環(huán)性能優(yōu)異的523材料。4C倍率下,這種材料循環(huán)300圈容量保持率達90.9%,而采用傳統(tǒng)沉淀法制備的523僅為72.4%。HUA等采用共沉淀法制備了線性梯度的811型,從顆粒內(nèi)核至表面,鎳含量依次遞減,錳含量依次遞增,從表1可明顯看到線性

6、梯度分布的811三元材料大倍率下放電容量和循環(huán)性明顯優(yōu)于元素均勻分布的811型。納米三元材料,其表面積大,Li+遷移路徑短、高的離子和電子電導(dǎo)、優(yōu)異的機械強度等可以極大改善電池大倍率下性能。HUA等采用快速共沉淀法制備了納米花狀的333型,3D納米花狀的333型不僅縮短了Li+遷移路徑,而且其特殊的表面形貌為Li+和電子提供了足夠多的通道,這也很好解釋了為什么該材料具有優(yōu)異倍率性能(2.7~4.3V,20C快充下,放電比容量達126mAh/g)。因氨水與金屬離子的優(yōu)異絡(luò)合性能,共沉淀法普遍采用氨水作為絡(luò)合劑,但氨水具有腐蝕性和刺激性,對人和水生動物均有害,即便在很低的濃度下(》300mg/

7、L),因此KONG等嘗試采用低毒性的絡(luò)合劑草酸和綠色絡(luò)合劑乳酸鈉替代氨水,其中乳酸鈉作為絡(luò)合劑制備的523型材料,其0.1C、0.2C性能均優(yōu)異于氨水作為絡(luò)合劑制備得到的523型。2.3溶膠凝膠法溶膠凝膠法(sol-gel)最大優(yōu)點是可在極短時間內(nèi)實現(xiàn)反應(yīng)物在分子水平上均勻混合,制備得到的材料具有化學(xué)成分分布均勻、具有精確的化學(xué)計量比、粒徑小且分布窄等優(yōu)點。MEI等采用改良的sol-gel法:將檸檬酸和乙二醇加入到一定濃

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。