能量均分定理

能量均分定理

ID:19765700

大小:296.00 KB

頁數(shù):14頁

時間:2018-10-06

能量均分定理_第1頁
能量均分定理_第2頁
能量均分定理_第3頁
能量均分定理_第4頁
能量均分定理_第5頁
資源描述:

《能量均分定理》由會員上傳分享,免費在線閱讀,更多相關內(nèi)容在教育資源-天天文庫。

1、1、自由度確定一個物體位置所需要的獨立坐標數(shù)目。五、能量均分定理理想氣體的內(nèi)能在直角坐標系中:(1)對單原子分子:類似質(zhì)點有x、y、z共3個自由度稱:平動自由度t=3單原子分子平動自由度t=3(2)對雙原子分子確定線上一個點,需(x、y、z)t=3個平動自由度,但因故只需r=2個轉動自由度確定線的方位,似乎還需(?、?、?)3個轉動自由度對直線所以,直線需要的自由度數(shù)為:平動自由度t=3轉動自由度r=2雙原子剛性分子平動自由度t=3轉動自由度r=2剛性雙原子分子非剛性雙原子分子*C非剛性雙原子分子非剛性多1個振動自由度(3)對剛性多原

2、子分子確定軸線要5個自由度確定繞軸轉動要加1個自由度自由度數(shù):剛性多原子分子(分子內(nèi)原子間距離保持不變)自由度數(shù)目平動轉動振動單原子分子303雙原子分子325多原子分子336剛性分子能量自由度分子自由度平動轉動總2.能量均分定理氣體分子沿x,y,z三個方向運動的平均平動動能完全相等,可以認為分子的平均平動動能均勻分配在每個平動自由度上。平衡態(tài)下,不論何種運動,相應于每一個可能自由度的平均動能都是能量按自由度均分定理如果氣體分子有i個自由度,則分子的平均動能為注意:(1)該公式是對大量分子的統(tǒng)計規(guī)律。(2)平衡態(tài)(3)理想氣體思考:在平

3、衡態(tài)下,氣體分子做無規(guī)則熱運動,任何一種運動形式都應是機會均等的,即沒有那一種運動形式比其它運動形式占優(yōu)勢。因此,我們可以把平動動能的統(tǒng)計規(guī)律推廣到其他運動形式上去。即:如:剛性雙原子分子,分子平均動能為:剛性三原子分子,分子平均動能為:分子平均動能按自由度均分的原則是統(tǒng)計規(guī)律氣體內(nèi)能分子平均動能的總和(平動、振動、轉動)分子間相互作用的位能總和(對理想氣體,忽略)(1)分子平均平動動能按自由度均分(2)分子平均動能按自由度均分六、理想氣體的內(nèi)能理想氣體的內(nèi)能分子間相互作用可以忽略不計分子間相互作用的勢能=0理想氣體的內(nèi)能=所有分子的

4、熱運動動能之總和1mol理想氣體的內(nèi)能為一定質(zhì)量理想氣體的內(nèi)能為溫度改變,內(nèi)能改變量為結論:一定質(zhì)量的某種理想氣體的內(nèi)能,只取決于分子的自由度和氣體的溫度,與氣體的體積、壓強無關。即:內(nèi)能是溫度的單值函數(shù)!一定質(zhì)量理想氣體的內(nèi)能為例就質(zhì)量而言,空氣是由76%的N2,23%的O2和1%的Ar三種氣體組成,它們的分子量分別為28、32、40。空氣的摩爾質(zhì)量為28.9?10-3kg,試計算1mol空氣在標準狀態(tài)下的內(nèi)能。解:在空氣中N2質(zhì)量摩爾數(shù)O2質(zhì)量摩爾數(shù)Ar質(zhì)量摩爾數(shù)1mol空氣在標準狀態(tài)下的內(nèi)能思考題:解釋下列表達式的含義①表示在平

5、衡態(tài)下,分子熱運動能量平均分配在分子每一個自由度上的能量均為②表示1.在平衡態(tài)下,分子的平均平動動能③表示在平衡態(tài)下,自由度為i的分子的平均總能量。④由質(zhì)量為M、摩爾質(zhì)量為Mmol、自由度為i的分子組成的系統(tǒng)的內(nèi)能。⑤1摩爾自由度為i的分子組成的系統(tǒng)的內(nèi)能。⑥1摩爾自由度為3的分子(單原子分子)組成的系統(tǒng)的內(nèi)能?;蚴撬蟹肿悠骄絼觿幽艿目偤汀?/p>

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內(nèi)容,確認文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。