資源描述:
《高中數(shù)學(xué) 2.4拋物線教學(xué)設(shè)計(jì) 新人教a版選修2-1》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、2.4拋物線一教學(xué)設(shè)想12.31拋物線及標(biāo)準(zhǔn)方程(1)教具的準(zhǔn)備問題1:同學(xué)們對拋物線已有了哪些認(rèn)識?在物理中,拋物線被認(rèn)為是拋射物體的運(yùn)行軌道;在數(shù)學(xué)中,拋物線是二次函數(shù)的圖象?問題2:在二次函數(shù)中研究的拋物線有什么特征?在二次函數(shù)中研究的拋物線,它的對稱軸是平行于y軸、開口向上或開口向下兩種情形.引導(dǎo)學(xué)生進(jìn)一步思考:如果拋物線的對稱軸不平行于y軸,那么就不能作為二次函數(shù)的圖象來研究了.今天,我們突破函數(shù)研究中這個限制,從更一般意義上來研究拋物線.通過提問來激發(fā)學(xué)生的探究欲望,首先研究拋物線的定義,教師可以用直觀的教具叫學(xué)生參與進(jìn)行
2、演示,再由學(xué)生歸納出拋物線的定義.(2)拋物線的標(biāo)準(zhǔn)方程設(shè)定點(diǎn)F到定直線l的距離為p(p為已知數(shù)且大于0).下面,我們來求拋物線的方程.怎樣選擇直角坐標(biāo)系,才能使所得的方程取較簡單的形式呢?讓學(xué)生議論一下,教師巡視,啟發(fā)輔導(dǎo),最后簡單小結(jié)建立直角坐標(biāo)系的方案方案1:(由第一組同學(xué)完成,請一優(yōu)等生演板.)以l為y軸,過點(diǎn)F與直線l垂直的直線為x軸建立直角坐標(biāo)系(圖2-30).設(shè)定點(diǎn)F(p,0),動點(diǎn)M的坐標(biāo)為(x,y),過M作MD⊥y軸于D,拋物線的集合為:p={M
3、
4、MF
5、=
6、MD
7、}.化簡后得:y2=2px-p2(p>0).方案2:
8、(由第二組同學(xué)完成,請一優(yōu)等生演板)以定點(diǎn)F為原點(diǎn),平行l(wèi)的直線為y軸建立直角坐標(biāo)系(圖2-31).設(shè)動點(diǎn)M的坐標(biāo)為(x,y),且設(shè)直線l的方程為x=-p,定點(diǎn)F(0,0),過M作MD⊥l于D,拋物線的集合為:p={M
9、
10、MF
11、=
12、MD
13、}.化簡得:y2=2px+p2(p>0).方案3:(由第三、四組同學(xué)完成,請一優(yōu)等生演板.)取過焦點(diǎn)F且垂直于準(zhǔn)線l的直線為x軸,x軸與l交于K,以線段KF的垂直平分線為y軸,建立直角坐標(biāo)系(圖2-32).拋物線上的點(diǎn)M(x,y)到l的距離為d,拋物線是集合p={M
14、
15、MF
16、=d}.化簡后得:y2=2
17、px(p>0).(3)例題講解與引申教材中選取了2個例題,例1是讓學(xué)生會應(yīng)用公式求拋物線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程。例2是應(yīng)用方面的問題,關(guān)鍵是由題意設(shè)出拋物線的方程即可。12。32拋物線的幾何性質(zhì)(1)拋物線的幾何性質(zhì)下面我們類比橢圓、雙曲線的幾何性質(zhì),從拋物線的標(biāo)準(zhǔn)方程y2=2px(p>0)出發(fā)來研究它的幾何性質(zhì).(二)幾何性質(zhì)怎樣由拋物線的標(biāo)準(zhǔn)方程確定它的幾何性質(zhì)?以y2=2px(p>0)為例,用小黑板給出下表,請學(xué)生對比、研究和填寫.(1)例題的講解與引申例3有2種解法;解法一運(yùn)用了拋物線的重要性質(zhì):拋物線上任一點(diǎn)到焦點(diǎn)的距離(即此
18、點(diǎn)的焦半徑)等于此點(diǎn)到準(zhǔn)線的距離.可得焦半徑公式設(shè)P(x0,這個性質(zhì)在解決許多有關(guān)焦點(diǎn)的弦的問題中經(jīng)常用到,因此必須熟練掌握.(2)由焦半徑不難得出焦點(diǎn)弦長公式:設(shè)AB是過拋物線焦點(diǎn)的一條弦(焦點(diǎn)弦),若A(x1,y1)、B(x2,y2)則有
19、AB
20、=x1+x2+p.特別地:當(dāng)AB⊥x軸,拋物線的通徑
21、AB
22、=2p例4涉及直線與圓錐曲線相交時,常把直線與圓錐曲線方程聯(lián)立,消去一個變量,得到關(guān)于另一變量的一元二次方程,然后用韋達(dá)定理求解,這是解決這類問題的一種常用方法.附教學(xué)教案2.4.1拋物線及標(biāo)準(zhǔn)方程知識與技能目標(biāo)使學(xué)生掌握拋物線的
23、定義、拋物線的標(biāo)準(zhǔn)方程及其推導(dǎo)過程.要求學(xué)生進(jìn)一步熟練掌握解析幾何的基本思想方法,提高分析、對比、概括、轉(zhuǎn)化等方面的能力.過程與方法目標(biāo)情感,態(tài)度與價值觀目標(biāo)(1)培養(yǎng)學(xué)生用對稱的美學(xué)思維來體現(xiàn)數(shù)學(xué)的和諧美。(2)培養(yǎng)學(xué)生觀察,實(shí)驗(yàn),探究與交流的數(shù)學(xué)活動能力。能力目標(biāo):(1)重視基礎(chǔ)知識的教學(xué)、基本技能的訓(xùn)練和能力的培養(yǎng); (2)啟發(fā)學(xué)生能夠發(fā)現(xiàn)問題和提出問題,善于獨(dú)立思考,學(xué)會分析問題和創(chuàng)造地解決問題; ?。?)通過教師指導(dǎo)發(fā)現(xiàn)知識結(jié)論,培養(yǎng)學(xué)生抽象概括能力和邏輯思維能力(1)復(fù)習(xí)與引入過程回憶平面內(nèi)與一個定點(diǎn)F的距離
24、和一條定直線l的距離的比是常數(shù)e的軌跡,當(dāng)0<e<1時是橢圓,當(dāng)e>1時是雙曲線,那么當(dāng)e=1時,它又是什么曲線?2.簡單實(shí)驗(yàn)如圖2-29,把一根直尺固定在畫圖板內(nèi)直線l的位置上,一塊三角板的一條直角邊緊靠直尺的邊緣;把一條繩子的一端固定于三角板另一條直角邊上的點(diǎn)A,截取繩子的長等于A到直線l的距離AC,并且把繩子另一端固定在圖板上的一點(diǎn)F;用一支鉛筆扣著繩子,緊靠著三角板的這條直角邊把繩子繃緊,然后使三角板緊靠著直尺左右滑動,這樣鉛筆就描出一條曲線,這條曲線叫做拋物線.反復(fù)演示后,請同學(xué)們來歸納拋物線的定義,教師總結(jié).(2)新課講授
25、過程(i)由上面的探究過程得出拋物線的定義《板書》平面內(nèi)與一定點(diǎn)F和一條定直線l的距離相等的點(diǎn)的軌跡叫做拋物線(定點(diǎn)F不在定直線l上).定點(diǎn)F叫做拋物線的焦點(diǎn),定直線l叫做拋物線的準(zhǔn)線.(ii)拋物線標(biāo)準(zhǔn)方程的推導(dǎo)過程引