資源描述:
《matlab中插值與擬合》由會(huì)員上傳分享,免費(fèi)在線(xiàn)閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫(kù)。
1、計(jì)算可視化1插值與數(shù)據(jù)擬合1.1一維數(shù)據(jù)的插值問(wèn)題1.1.1一維插值問(wèn)題的求解求解方法一維插值interp1()函數(shù)的調(diào)用格式為:說(shuō)明函數(shù)根據(jù)x,y的值,計(jì)算函數(shù)在x1處的值。x,y是兩個(gè)等長(zhǎng)的已知向量,分別描述采樣點(diǎn)和樣本值,x1是一個(gè)向量或標(biāo)量,描述欲插值的點(diǎn),y1是一個(gè)與x1等長(zhǎng)的插值結(jié)果。插值方法‘linear’,‘nearest’,‘cubic’,‘spline’注:X1的取值范圍不能超出X的給定范圍,否則,會(huì)給出“NaN”錯(cuò)誤。例1-1:已知的數(shù)據(jù)點(diǎn)來(lái)自函數(shù),根據(jù)生成的數(shù)據(jù)進(jìn)行插值處理,得出較
2、平滑的曲線(xiàn)直接生成數(shù)據(jù)。調(diào)用函數(shù):Step1:x=0:.12:1;y=(x.^2-3*x+5).*exp(-5*x).*sin(x);plot(x,y,x,y,'o')%繪制原函數(shù)的圖形%'linear'x1=0:.02:1;y0=(x1.^2-3*x1+5).*exp(-5*x1).*sin(x1);y1=interp1(x,y,x1);%默認(rèn)為'linear',在樣本點(diǎn)上斜率變化很大plot(x1,[y1'],':',x,y,'o',x1,y0)%'cubic'y2=interp1(x,y,x1,'c
3、ubic');%最占內(nèi)存,輸出結(jié)果與spline差不多plot(x1,[y2'],':',x,y,'o',x1,y0)%'spline'y3=interp1(x,y,x1,'spline');%最花時(shí)間,但輸出結(jié)果也最平滑plot(x1,[y3'],':',x,y,'o',x1,y0)%'nearest'y4=interp1(x,y,x1,'nearest');%執(zhí)行速度最快,輸出結(jié)果為直角轉(zhuǎn)折plot(x1,[y4'],':',x,y,'o',x1,y0)%'linear','cubic','splin
4、e','nearest'plot(x1,[y1',y2',y3',y4'],':',x,y,'o',x1,y0);Step2:[max(abs(y0(1:49)-y2(1:49))),max(abs(y0-y3)),max(abs(y0-y4))]ans=0.01770.00860.1598例1-2:編寫(xiě)一段程序,允許利用插值方法手工繪制一條光滑的曲線(xiàn)。functionsketcher(vis)x=[];y=[];i=1;h=[];axis([0,101])while1[x0,y0,but]=ginput
5、(1);ifbut==1,x=[x,x0];y=[y,y0];h(i)=line(x0,y0);set(h(i),'Marker','o');i=i+1;else,break;endendifnargin==1,delete(h);end%若需要,可以刪除樣本點(diǎn)標(biāo)識(shí)xx=[x(1):(x(end)-x(1))/100:x(end)];yy=interp1(x,y,xx,'spline');line(xx,yy)1.1.2Lagrange插值算法及應(yīng)用求解方法:已知xi,yi點(diǎn),可求出x向量上各點(diǎn)處的插值為
6、:functiony=lagrange(x0,y0,x)i1=1:length(x0);y=zeros(size(x));fori=iiij=find(ii~=i);y1=1;forj=1:length(ij),y1=y1.*(x-x0(ij(j)));endy=y+y1*y0(i)/prod(x0(i)-x0(ij));end例1-3:對(duì)進(jìn)行Lagrange插值。x0=-1+2*[0:10]/10;y0=1./(1+25*x0.^2);x=-1:.01:1;y=lagrange(x0,y0,x);%La
7、grange插值ya=1./(1+25*x.^2);plot(x,ya,x,y,':')y1=interp1(x0,y0,x,'cubic');y2=interp1(x0,y0,x,'spline');plot(x,ya,x,y1,':',x,y2,'--')1.2已知樣本點(diǎn)的定積分計(jì)算求解方法編寫(xiě)函數(shù):functiony=quadspln(x0,y0,a,b)f=inline('interp1(x0,y0,x,"spline")',..'x','x0','y0');y=quadl(f,a,b,1e-8,
8、[],x0,y0);%先用樣條函數(shù)進(jìn)行插值后再積分其中為樣本點(diǎn)構(gòu)成的橫縱坐標(biāo)向量,為積分區(qū)間例1-4:利用樣條插值算法求解。求解:x0=0:pi/30:pi;y0=sin(x0);I=quadspln(x0,y0,0,pi)結(jié)果:I=2.0000比較梯形法和插值法:梯形法:x0=0:pi/10:pi;y0=sin(x0);I1=trapz(x0,y0)結(jié)果:I1=1.9835插值法:I=quadspln(x0,y0,0,pi)