資源描述:
《非線性二階常微分方程邊值問題的正解》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫。
1、大連理工大學(xué)碩士學(xué)位論文非線性二階常微分方程邊值問題的正解姓名:徐旭申請學(xué)位級別:碩士專業(yè):基礎(chǔ)數(shù)學(xué)指導(dǎo)教師:韓志清20060601摘要本文主要利用錐上不動點(diǎn)指數(shù)定理,解決非線性二階常微分方程邊值問題的正解的存在性問題,并給出了邊值問題正解存在的條件,改進(jìn)了次線性和超線性條件下正解存在的結(jié)論.第一章,緒論,介紹了本文研究的背景和近期成果,以及本文主要研究的問題.第二章,相關(guān)基礎(chǔ)知識,主要介紹本文將要用到的數(shù)學(xué)基本概念和定理,包括本文中關(guān)鍵的兩個不動點(diǎn)指數(shù)定理,給出了我們要用到的線性二階常微分方程邊值問題對應(yīng)的具體的Green函數(shù),最后介紹
2、了常微分方程的特征值問題.第三章,非線性二階常微分方程的正解,主要利用錐上的不動點(diǎn)指數(shù)定理,證明了非線性二階常微分方程邊值問題正解的存在性,給出存在正解的條件,改進(jìn)了以前文獻(xiàn)中的條件,使結(jié)果中含有方程的第一特征值.同時,得到了變換后二階常微分方程線性算子的一些性質(zhì).最后,作為特殊情況,得到了已有的次線陸與超線性條件.關(guān)鍵詞;正解;錐映射不動點(diǎn)定理;不動點(diǎn)指數(shù);Green函數(shù);第一特征值PositiveSolutionsOfBoundaryVauleProblemsforNonlinearSecondOrderOrdinaryEquatio
3、nsAbstractThe出mofthisthesisiStostudytheexistenceofpositivesolutionsofboundaryvalueproblemfornonlinearsecondorderordinarydLfferentialequations,mainlyusingthefixedpointindextheoryinacone.Theconditionsoftheexistenceofpositivesolutionsoftheboundaryvalueproblemaregiveninthethe
4、sis.WeimprovetheresultoftheexistenceofpositiveSOlutionseitherinthesublinearorinthesuperlinearcondi南ns.Sowegetanessentialexistenceresukbecauseofitsinvolvingthefirstpositiveeigenvalueoftheequation.InChapter1,wearedevotedtointroducingthedevelopmentandtheachievementoftheexist
5、enceofpositivesolutionsofordinarydifferentialequations,alsopresentingtheproblemsthatwillbestudied.InChapter2,weintroducesomeessentialdefinitions,preliminarytheoremsrelatedtothisthesis,involvingthetwoimportanttheoremsoffixedpointindextheory,alsopre-sentingthecorrespondingG
6、reenfunctionoftheboundaryvalueproblemforthelinearsencondorderodinarydifferentialequation.Furthermore,weintroducetheeigenvalueproblemofordinarydifferentialequations,InChapter3,usingthefixedpointindextheoryinacone,weprovetheexistenceofpositivesolutionsofboundaryvalueproblem
7、ofnonlinearsecondorderordinarydifief—entialequations.Wealsopresenttheconditionsofexistenceofpositivesolutions.Thus.wegetanessentialexistenceresultbecauseofitsinvolvingthefirstpositiveeigenvalueoftheequation.Meanwhile,weobtainsomepropertiesofthehnearoperatorfromthetransfor
8、medsecondorderordinarydifferentialequation.Fin出lKWeobtmnthesublineaiandsupeflinearconditionsunde