Teaching AI about human knowledge

Teaching AI about human knowledge

ID:41466532

大小:584.75 KB

頁數(shù):19頁

時間:2019-08-25

Teaching AI about human knowledge_第1頁
Teaching AI about human knowledge_第2頁
Teaching AI about human knowledge_第3頁
Teaching AI about human knowledge_第4頁
Teaching AI about human knowledge_第5頁
資源描述:

《Teaching AI about human knowledge》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

1、TeachingAIabouthumanknowledgeInesMontaniExplosionAIExplosionAIisadigitalstudiospecialisinginArti?cialIntelligenceandNaturalLanguageProcessing.Open-sourcelibraryforindustrial-strengthNaturalLanguageProcessingspaCy’snext-generationMachineLearninglibraryfordeeplearningwithtextcomingso

2、on:pre-trained,customisablemodelsDataStoreforavarietyoflanguagesanddomainsMachinelearningisprogrammingbyexample.Examplesareyoursourcecode,trainingiscompilation.exampleslabelsinputpredictiontrainingdrawexamplesfromthesamedistributionastheruntimeinputsgoal:system’spredictiongivensome

3、inputmatcheslabelahumanwouldhaveassignedHowmachines“l(fā)earn”Example:trainingasimplepart-of-speechtaggerwiththeperceptronalgorithm(teachthemodeltorecogniseverbs,nouns,etc.)deftrain_tagger(examples):examples=words,tags,contextsW=defaultdict(lambda:zeros(n_tags))theweightswe'lltrainfor(

4、word,prev,next),human_taginexamples:scores=W[word]+W[prev]+W[next]scoreeachtaggivenweights&contextguess=scores.argmax()getthebest-scoringtagifguess!=human_tag:iftheguesswaswrong,adjustweightsforfeatin(word,prev,next):W[feat][guess]-=1decreasescoreforbadtaginthiscontextW[feat][human

5、_tag]+=1increasescoreforgoodtaginthiscontextThebottleneckinAIisdata,notalgorithms.Algorithmsaregeneral,trainingdataisspeci?c.dataquality,dataquantityandaccuracyproblemsarestillthebiggestproblemsinAI(Source:TheStateofAIsurvey)youcanextractknowledgefromallkindsofsources,e.g.sentiment

6、fromemojionReddit?youusuallyneedatleastsomedataspeci?ctoyourproblemannotatedbyhumansWherehumanknowledgeinAIreallycomesfromMechanicalTurkhumanannotators~$5perhourboringtaskslowincentivesImages:AmazonMechanicalTurk,depressing.orgDon’texpectgreatdataifyou’reboringtheshitoutofunderpaid

7、people.Whyarewe“designingaround”this?“TakingaHIT:DesigningaroundRejection,Mistrust,Risk,andWorkers’ExperiencesinAmazonMechanicalTurk”(McInnisetal.,2016)datacollectionneedsthesametreatmentasallotherhuman-facingprocessesgoodUX+purpose+incentives=betterqualitySOLUTION#1UX-drivendataco

8、llectionwithactivelearning

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。