資源描述:
《2015考研數(shù)學基礎班習題講義(高數(shù)).pdf》由會員上傳分享,免費在線閱讀,更多相關內(nèi)容在行業(yè)資料-天天文庫。
1、第一講函數(shù)極限連續(xù)性?1,x?1?x1.設fx????0,x?1,gx()?e,求fgx?()?和gfx?()????1,x?1n?12.設a?0,r?1,求lim(a?ar???ar).n??3.求下列數(shù)列的極限n?1n3?2(1)lim(2)lim(n?3n?n?n)n?1nn??2?3n??nk?352n?1?(3)lim?2(4)lim?22?22???22?n??k?1n?n?kn???1?22?3n?(n?1)?4.設0?x?3,x?x(3?x),證明limx存在,并求其值.1n?1nnnn??5.設a?1,a?1?a?0,證明數(shù)列{a}收斂,并求l
2、ima.1n?1nnnn??6.求下列極限468(2x?1)(x?1)?5x(x?x)(2)lim3x2(3x?8?3x?1)(1)lim10x??x??(x?2)ln(1?3x?1)xxx(3)lim(4)limcoscos?cosnx?1arcsin23x2?1n??24211?tanxx3x?1x??(6)lim()(5)lim??x??x?1x?0?1?sinx?2x2e?11?x?cos2x(7)lim(8)limx?0xln(1?2x)x?0x(ex?1)nxsin2x?2e?cosx7.設f(x)?lim,求limf(x).nxn??x?ex?02
3、8.設lim(x?ax?b?cx?d)?0,求a,b,c,d.x????2,x?0,x??2?29.設fx????4?x,0?x?2,求出fx()的間斷點,并指出是哪一類間斷點,若可去,??4,x?2則補充定義,使其在該點連續(xù).11exarctan1?x10.設f(x)?lim,求f(x)的間斷點并判定類型.2nxn??x?ex11.驗證方程x?2?1至少有一個小于1的根.1第二講導數(shù)與微分?sinx,x?01.已知f?x???,求fx?().?x,x?02.求下列函數(shù)的導數(shù):4532?ln3x(1)y?x???15是(12)y?3xx2?ln5x(2)y?3x
4、3?4x?5e2x(13)y?ln(cosx?tanx)(3)y?3cotx?cscx?5(14)y?2?3ln3x(4)y?sinx?cosx(15)y?e?2x(x3?4x?5)3(5)y?xlnxet?e?t(16)y?xet?e?t(6)2esinx2lnxx?3(7)y?(17)y?arctan23xx?4x35e(18)y?cosx?sin(x)(8)y??ln53x2x3(19)y?lntan(9)y?xlnx?sinx32?cosx??4x?23?x(10)y?(20)y?3?sinx?1?x?522(11)y?ln(x?a?x)f(x)3.設f
5、(x)在x?2處可導,且lim?2,則f(2)?,f?(2)?.2x?2x?41f(x)fx()4.設f(x)二階連續(xù)可導,且lim?0,f??(0)?4,則lim[1?]x?.x?0xx?0x5.設fx()對任意的實數(shù)x,x有fx(?x)?fxfx()(),且f?(0)1?,試證:fx?()?fx().121212f(2?x)?f(2?x)6.設f(x)連續(xù)可導,f(2)?1,且lim??1,則曲線y?f(x)在點(2,f(2))x?0x的切線方程為.?7.已知曲線的極坐標方程r?1?cos?,求曲線上對應于??處的切線與法線的直角坐標方程.68.設f(x)為
6、周期是5的連續(xù)函數(shù),在x?0鄰域內(nèi),恒有f(1sin)3(1sin)?x?f?x?8x??()x,?(x)其中l(wèi)im?0,f(x)在x?1處可導,求曲線y?f(x)在點(6,f(6))處的切線方程.x?0x2xy9.設函數(shù)y?yx()由方程xy?e?e?0所確定,則y'?0??.2??x?t?2tdy10.若fx()??,則?.??y?ln1??t?dxt?0?x?arctan2tdy11.設?,則?.y2?y?e?ln(e?t)dxx?0212.若f(x)是可導函數(shù),且f??x??sin?sin?x?1??,f(0)?4,則f(x)的反函數(shù)x??()y當自變量
7、取4時的導數(shù)值為.13.若f(x)可導,y?fffx??()??,則y??.yxdy14.設y?y(x)由方程x?y所確定,求.dx??1c15.設f(x)滿足afx()?bf???,其中a、b、c都是常數(shù),且a?b,??xx(1)證明f(?x)??fx();(2)求fx?(),f??()x.3第三講微分中值定理及導數(shù)的應用1.設f(x)在[0,3]上連續(xù),在(0,3)內(nèi)可導,且f(0)?f(1)?f(2)?3,f(3)?1.試證:必存在??(0,3),使f?()??0.12.設f(x)在[0,1]上連續(xù),在(0,1)內(nèi)可導,f(0)?f(1)?0,f()?1,
8、試證:21(1)存在??