資源描述:
《對邊相等對角相等.docx》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、第十八章平行四邊形18.1.1平行四邊形及其性質(zhì)(一)一、教學(xué)目標(biāo):1.理解并掌握平行四邊形的概念和平行四邊形對邊、對角相等的性質(zhì).2.會用平行四邊形的性質(zhì)解決簡單的平行四邊形的計(jì)算問題,并會進(jìn)行有關(guān)的論證.3.培養(yǎng)學(xué)生發(fā)現(xiàn)問題、解決問題的能力及邏輯推理能力.二、重點(diǎn)、難點(diǎn)1.重點(diǎn):平行四邊形的定義,平行四邊形對角、對邊相等的性質(zhì),以及性質(zhì)的應(yīng)用.2.難點(diǎn):運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的論證和計(jì)算.3.難點(diǎn)的突破方法:本節(jié)的主要內(nèi)容是平行四邊形的定義和平行四邊形對邊相等、對角相等的性質(zhì).這一節(jié)是全章的重點(diǎn)之一,學(xué)好本節(jié)可為學(xué)好全章打下基
2、礎(chǔ).學(xué)習(xí)這一節(jié)的基礎(chǔ)知識是平行線性質(zhì)、全等三角形和四邊形,課堂上可引導(dǎo)學(xué)生回憶有關(guān)知識.平行四邊形的定義在小學(xué)里學(xué)過,學(xué)生是不生疏的,但對于概念的本質(zhì)屬性的理解并不深刻,所以這里并不是復(fù)習(xí)鞏固的問題,而是要加深理解,要防止學(xué)生把平行四邊形概念當(dāng)作已知,而不重視對它的本質(zhì)屬性的掌握.為了有助于學(xué)生對平行四邊形本質(zhì)屬性的理解,在講平行四邊形定義前,要把平行四邊形的對邊、對角讓學(xué)生認(rèn)清楚.講定義時要強(qiáng)調(diào)“四邊形”和“兩組對邊分別平行”這兩個條件,一個“四邊形”必須具備有“兩組對邊分別平行”才是平行四邊形;反之,平行四邊形,就一定是有“兩組對邊
3、分別平行”的一個“四邊形”.要指出,定義既是平行四邊形的一個判定方法,又是平行四邊形的一個性質(zhì).新教材是先讓學(xué)生用觀察、度量和猜想的方法得到平行四邊形的對邊相等、對角相等這兩條性質(zhì)的,然后用兩個三角形全等,證明了這兩條性質(zhì).這有利于培養(yǎng)學(xué)生觀察、分析、猜想、歸納知識的自學(xué)能力.教學(xué)中可以通過大量的生活中的實(shí)例:如推拉門、汽車防護(hù)鏈、書本等引入新課,使學(xué)生在已有的知識和認(rèn)知的基礎(chǔ)上去探索數(shù)學(xué)發(fā)展的規(guī)律,達(dá)到用問題創(chuàng)設(shè)數(shù)學(xué)情境,提高學(xué)生學(xué)習(xí)興趣.然后讓學(xué)生通過具體問題的觀察、猜想出一些不同于一般四邊形的性質(zhì),進(jìn)一步由學(xué)生歸納總結(jié)得到平行四邊
4、形的性質(zhì).同時教師整理出一種推導(dǎo)平行四邊形性質(zhì)的范式,讓學(xué)生在教師的范式的誘導(dǎo)下,初步達(dá)到演繹數(shù)學(xué)論證過程的能力.最后通過不同層次的典型例、習(xí)題,讓學(xué)生自己理解并掌握本節(jié)課的知識.三、例題的意圖分析例1是教材P93的例1,它是平行四邊形性質(zhì)的實(shí)際應(yīng)用,題目比較簡單,其目的就是讓學(xué)生能運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的計(jì)算,講課時,可以讓學(xué)生來解答.例2是補(bǔ)充的一道幾何證明題,即讓學(xué)生學(xué)會運(yùn)用平行四邊形的性質(zhì)進(jìn)行有關(guān)的論證,又讓學(xué)生從較簡單的幾何論證開始,提高學(xué)生的推理論證能力和邏輯思維能力,學(xué)會演繹幾何論證的方法.此題應(yīng)讓學(xué)生自己進(jìn)行推理論
5、證.四、課堂引入1.我們一起來觀察下圖中的竹籬笆格子和汽車的防護(hù)鏈,想一想它們是什么幾何圖形的形象?平行四邊形是我們常見的圖形,你還能舉出平行四邊形在生活中應(yīng)用的例子嗎?你能總結(jié)出平行四邊形的定義嗎?(1)定義:兩組對邊分別平行的四邊形是平行四邊形.(2)表示:平行四邊形用符號“”來表示.如圖,在四邊形ABCD中,AB∥DC,AD∥BC,那么四邊形ABCD是平行四邊形.平行四邊形ABCD記作“ABCD”,讀作“平行四邊形ABCD”.①∵AB//DC,AD//BC,∴四邊形ABCD是平行四邊形(判定);②∵四邊形ABCD是平行四邊形∴AB
6、//DC,AD//BC(性質(zhì)).注意:平行四邊形中對邊是指無公共點(diǎn)的邊,對角是指不相鄰的角,鄰邊是指有公共端點(diǎn)的邊,鄰角是指有一條公共邊的兩個角.而三角形對邊是指一個角的對邊,對角是指一條邊的對角.(教學(xué)時要結(jié)合圖形,讓學(xué)生認(rèn)識清楚)2.【探究】平行四邊形是一種特殊的四邊形,它除具有四邊形的性質(zhì)和兩組對邊分別平行外,還有什么特殊的性質(zhì)呢?我們一起來探究一下.讓學(xué)生根據(jù)平行四邊形的定義畫一個一個平行四邊形,觀察這個四邊形,它除具有四邊形的性質(zhì)和兩組對邊分別平行外以,它的邊和角之間有什么關(guān)系?度量一下,是不是和你猜想的一致?(1)由定義知道
7、,平行四邊形的對邊平行.根據(jù)平行線的性質(zhì)可知,在平行四邊形中,相鄰的角互為補(bǔ)角.(相鄰的角指四邊形中有一條公共邊的兩個角.注意和第一章的鄰角相區(qū)別.教學(xué)時結(jié)合圖形使學(xué)生分辨清楚.)(2)猜想平行四邊形的對邊相等、對角相等.下面證明這個結(jié)論的正確性.已知:如圖ABCD,求證:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的對角線AC,它將平行四邊形分成△ABC和△CDA,證明這兩個三角形全等即可得到結(jié)論.(作對角線是解決四邊形問題常用的輔助線,通過作對角線,可以把未知問題轉(zhuǎn)化為已知的關(guān)于三角形的問題.)證明:連接
8、AC,∵ AB∥CD,AD∥BC,∴ ∠1=∠3,∠2=∠4.又 AC=CA,∴ △ABC≌△CDA(ASA).∴ AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴ ∠BAD=∠BCD.由此