資源描述:
《函數(shù)發(fā)展史說課材料.ppt》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、早期函數(shù)概念——幾何觀念下的函數(shù)十七世紀(jì)伽俐略(G.Galileo,意,1564-1642)在《兩門新科學(xué)》一書中,幾乎從頭到尾包含著函數(shù)或稱為變量的關(guān)系這一概念,用文字和比例的語言表達(dá)函數(shù)的關(guān)系。1673年前后笛卡爾(Descartes,法,1596-1650)在他的解析幾何中,已經(jīng)注意到了一個變量對于另一個變量的依賴關(guān)系,但由于當(dāng)時尚未意識到需要提煉一般的函數(shù)概念,因此直到17世紀(jì)后期牛頓、萊布尼茲建立微積分的時候,數(shù)學(xué)家還沒有明確函數(shù)的一般意義,絕大部分函數(shù)是被當(dāng)作曲線來研究的。二十八世紀(jì)函數(shù)概念—代數(shù)觀念下的函數(shù)萊布尼茲笛卡爾18世紀(jì)中葉歐拉(L.Euler,瑞,1707-
2、1783)就給出了非常形象的,一直沿用至今的函數(shù)符號。歐拉給出的定義是:一個變量的函數(shù)是由這個變量和一些數(shù)即常數(shù)以任何方式組成的解析表達(dá)式。他把約翰·貝努利給出的函數(shù)定義稱為解析函數(shù),并進(jìn)一步把它區(qū)分為代數(shù)函數(shù)(只有自變量間的代數(shù)運(yùn)算)和超越函數(shù)(三角函數(shù)、對數(shù)函數(shù)以及變量的無理數(shù)冪所表示的函數(shù)),還考慮了“隨意函數(shù)”(表示任意畫出曲線的函數(shù)),不難看出,歐拉給出的函數(shù)定義比約翰·貝努利的定義更普遍、更具有廣泛意義。.3十九世紀(jì)函數(shù)概念——對應(yīng)關(guān)系下的函數(shù)1822年傅里葉(Fourier,法,1768-1830)發(fā)現(xiàn)某些函數(shù)可用曲線表示,也可用一個式子表示,或用多個式子表示,從而結(jié)
3、束了函數(shù)概念是否以唯一一個式子表示的爭論,把對函數(shù)的認(rèn)識又推進(jìn)了一個新的層次。1823年柯西(Cauchy,法,1789-1857)從定義變量開始給出了函數(shù)的定義,同時指出,雖然無窮級數(shù)是規(guī)定函數(shù)的一種有效方法,但是對函數(shù)來說不一定要有解析表達(dá)式,不過他仍然認(rèn)為函數(shù)關(guān)系可以用多個解析式來表示,這是一個很大的局限,突破這一局限的是杰出數(shù)學(xué)家狄利克雷??挛?Cauchy1837年狄利克雷(Dirichlet,德,1805-1859)認(rèn)為怎樣去建立x與y之間的關(guān)系無關(guān)緊要,他拓廣了函數(shù)概念,指出:“對于在某區(qū)間上的每一個確定的x值,y都有一個或多個確定的值,那么y叫做x的函數(shù)?!钡依死?/p>
4、的函數(shù)定義,出色地避免了以往函數(shù)定義中所有的關(guān)于依賴關(guān)系的描述,簡明精確,以完全清晰的方式為所有數(shù)學(xué)家無條件地接受。這就是人們常說的經(jīng)典函數(shù)定義。等到康托爾(Cantor,德,1845-1918)創(chuàng)立的集合論在數(shù)學(xué)中占有重要地位之后,維布倫(Veblen,美,1880-1960)用“集合”和“對應(yīng)”的概念給出了近代函數(shù)定義,通過集合概念,把函數(shù)的對應(yīng)關(guān)系、定義域及值域進(jìn)一步具體化了,且打破了“變量是數(shù)”的極限,變量可以是數(shù),也可以是其它對象(點、線、面、體、向量、矩陣等)。1.4現(xiàn)代函數(shù)概念——集合論下的函數(shù)豪斯道夫(F.Hausdorff1914年豪斯道夫(F.Hausdorff
5、)在《集合論綱要》中用“序偶”來定義函數(shù)。其優(yōu)點是避開了意義不明確的“變量”、“對應(yīng)”概念,其不足之處是又引入了不明確的概念“序偶”。庫拉托夫斯基(Kuratowski)于1921年用集合概念來定義“序偶”,即序偶(a,b)為集合{{a},},這樣,就使豪斯道夫的定義很嚴(yán)謹(jǐn)了。1930年新的現(xiàn)代函數(shù)定義為,若對集合M的任意元素x,總有集合N確定的元素y與之對應(yīng),則稱在集合M上定義一個函數(shù),記為y=f(x)。元素x稱為自變元,元素y稱為因變元。函數(shù)概念的定義經(jīng)過三百多年的錘煉、變革,形成了函數(shù)的現(xiàn)代定義形式,但這并不意味著函數(shù)概念發(fā)展的歷史終結(jié),20世紀(jì)40年代,物理學(xué)研究的需
6、要發(fā)現(xiàn)了一種叫做Dirac-δ函數(shù),它只在一點處不為零,而它在全直線上的積分卻等于1,這在原來的函數(shù)和積分的定義下是不可思議的,但由于廣義函數(shù)概念的引入,把函數(shù)、測度及以上所述的Dirac-δ函數(shù)等概念統(tǒng)一了起來。因此,隨著以數(shù)學(xué)為基礎(chǔ)的其他學(xué)科的發(fā)展,函數(shù)的概念還會繼續(xù)擴(kuò)展?,F(xiàn)在知道了嗎?這是函數(shù)的發(fā)展史結(jié)束放映