the dark side of data science

the dark side of data science

ID:7303609

大?。?18.26 KB

頁數(shù):8頁

時間:2018-02-11

the dark side of data science_第1頁
the dark side of data science_第2頁
the dark side of data science_第3頁
the dark side of data science_第4頁
the dark side of data science_第5頁
資源描述:

《the dark side of data science》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在工程資料-天天文庫

1、CHAPTER15TheDarkSideofDataScienceMarckVaismanMoreoftenthannot,datascientistshitroadblocksthatdonotnecessarilyarisefromproblemswithdataitself,butfromorganizationalandtechnicalissues.Thischapterfocusesonsomeoftheseissuesandprovidespracticaladviceondealingwiththem,bothfromhumanandtechnicalperspectiv

2、es.Theanecdotesandexamplesinthischapteraredrawnfromreal-worldexperiencesworkingwithmanyclientsoverthelastfiveyearsandhelpingthemovercomemanyofthesechallenges.Althoughtheideasthatarepresentedinthischapterarenotnew,themainpurposeistohighlightcommonpitfallsthatcanderailanalyticalefforts.Whenputintoc

3、ontext,theseguidelineswillhelpbothdatascientistsandorganizationsbesuccessful.AvoidThesePitfallsThesubjectofrunningasuccessfulanalyticsorganizationhasbeenexploredinthepast.Therearemanybooks,articles,andopinionswrittenaboutitandthiswillnotbead‐dressedhere.However,ifyouwouldliketobesuccessfulinexecu

4、tingand/ormanaginganalyticaleffortswithinyourorganization,youshouldnotheedthe“commandments”listedbelow.I.KnownothingaboutthydataII.ThoushaltprovideyourdatascientistswithasingletoolforalltasksIII.Thoushaltanalyzeforanalysis’sakeonlyIV.ThoushaltcompartmentalizelearningsV.Thoushaltexpectomnipotencef

5、romdatascientists187Thesecommandmentsattempttocluster-relatedideas,whichIwillexploreinthefol‐lowingsections.Ifyoudochoosetoobeyoneormoreofthesecommandments—whichwe’veexplicitlywarnedyounotto—youwillmostlikelyheaddownthepathofnotachievingyourgoals.KnowNothingAboutThyDataYouhavetoknowyourdata,perio

6、d.Thiscannotbestressedenough.Realworlddataismessyanddirty;thatisafact.Regardlessofhowmessyordirtyyourdatais,youneedtounderstandallofitsnuances.Youneedtounderstandthemetadataaboutthedata.Ifyourdataisdirty,knowthat.Iftherearemissingvalues,knowthat,andknowwhytheyaremissing.Ifyouhavemultiplesourceswi

7、thdifferentformatting,knowthat.Knowingthydataisacrucialstepinasuccessfulanalysiseffort.Timespentup-frontunderstandingallofthenuancesandintricaciesofthedataistimewellspent.Theruleofthumbsaysthat80%oftimespentinanalytics

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。