Bubble attachment to cellulose and silica surfaces of varied surface energies wetting transition and - Ketola et al. - Unknown - Unknow

Bubble attachment to cellulose and silica surfaces of varied surface energies wetting transition and - Ketola et al. - Unknown - Unknow

ID:81816480

大小:1.61 MB

頁數(shù):11頁

時(shí)間:2023-07-20

上傳者:U-14522
Bubble attachment to cellulose and silica surfaces of varied surface energies wetting transition and - Ketola et al. - Unknown - Unknow_第1頁
Bubble attachment to cellulose and silica surfaces of varied surface energies wetting transition and - Ketola et al. - Unknown - Unknow_第2頁
Bubble attachment to cellulose and silica surfaces of varied surface energies wetting transition and - Ketola et al. - Unknown - Unknow_第3頁
Bubble attachment to cellulose and silica surfaces of varied surface energies wetting transition and - Ketola et al. - Unknown - Unknow_第4頁
Bubble attachment to cellulose and silica surfaces of varied surface energies wetting transition and - Ketola et al. - Unknown - Unknow_第5頁
Bubble attachment to cellulose and silica surfaces of varied surface energies wetting transition and - Ketola et al. - Unknown - Unknow_第6頁
Bubble attachment to cellulose and silica surfaces of varied surface energies wetting transition and - Ketola et al. - Unknown - Unknow_第7頁
Bubble attachment to cellulose and silica surfaces of varied surface energies wetting transition and - Ketola et al. - Unknown - Unknow_第8頁
Bubble attachment to cellulose and silica surfaces of varied surface energies wetting transition and - Ketola et al. - Unknown - Unknow_第9頁
Bubble attachment to cellulose and silica surfaces of varied surface energies wetting transition and - Ketola et al. - Unknown - Unknow_第10頁
資源描述:

《Bubble attachment to cellulose and silica surfaces of varied surface energies wetting transition and - Ketola et al. - Unknown - Unknow》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫。

S1SupportingInformationBubbleattachmenttocelluloseandsilicasurfacesofvariedsurfaceenergies:wettingtransitionandimplicationsinfoamformingAnnikaE.Ketola,aWenchaoXiang,bTuomoHjelt,aHeikkiPajari,aTeklaTammelin,aOrlandoJ.Rojasb,candJukkaA.Ketojaaa:VTTTechnicalResearchCentreofFinlandLtd,P.O.Box1603,FI-40101Jyv?skyl?,Finland;b:DepartmentofBioproductsandBiosystems,SchoolofChemicalEngineering,AaltoUniversity,FI-00076Espoo,Finlandc:DepartmentsofChemical&BiologicalEngineering,2360EastMall;Chemistry,2036MainMall,andWoodScience,2424MainMall,TheUniversityofBritishColumbia,Vancouver,BCV6T1Z3,Canada*Correspondingauthor:jukka.ketoja@vtt.fiDeterminationsurfacetension(γ)isothermsofSDSusingthereversedpendantdrop(bubble)method.Thesurfacetension(γ)isothermsofsodiumdodecylsulfate(SDS)andSDSwithNaCl(0.01M)additionweredeterminedusinganopticalThetatensiometer(Attension,BiolinScientific,Espoo,Finland).TheThetaconsistsofacamera,asamplestage,aquartzcuvette(20×20mm)andahookedneedle(0.7176mm,stainlesssteel).Inthemeasurement,thecuvettewasfilledwiththesampleliquidandthehookedneedlewasimmersedinthesolution.Then,a4μlairbubblewascreatedonthetipofthehookedneedle(Fig.S1)anddeterminationofγwasperformedusingreversedpendantdropshapeanalysis,inwhichγisdefinedbythebubbleshape:

1S2?02(S1)?=???,?whereγisthesurfacetension,Δρisthedensitydifferencebetweenphases,gisthegravitationalconstant,R0istheradiusofthebubblecurvatureattheapex,andβisashapefactor.βcanbedefinedthroughtheYoung-Laplaceequationexpressedas3Dfirst-orderequations.Theexperimentswerecarriedoutinaregulatedatmosphereof23°Cand50%relativehumidity.SurfacetensionisothermsofSDS.Thesurfacetension(γ)isothermsofSDSwithandwithout0.01MNaCladditionmeasuredusingthebubblemethodareshowninFig.S1.TheincreaseinSDSconcentrationresultedinadecreaseinγuntilcriticalmicelleconcentration(CMC)wasreachedataround8mM.Accordingtotheliterature,theCMCofpureSDSis8.4mM,afterwhichγremainsatca.36mN/m(Fainermanetal.2010).Thebumpinsurfacetensionintherange5.0?8.0mMindicatesthepresenceofimpurities(e.g.dodecanol)inthesolutionsasaconsequenceofSDShydrolysis(Fainermanetal.2010;Linetal.1999).ThepresenceofNaClshiftedtheCMCtoca.4mMandtheeffectofimpuritieswassignificantlyreduced.Theincreasedvolumeofpositivecounterions(Na+)enhancesSDSadsorptiontotheair-liquidinterface,maskingtheeffectofimpuritiesanddecreasingtheCMC(Fainermanetal.2010).8070)60/mmN(50γ40300.505.0050.00SDS(mM)SDSSDS+0.01MNaClFigureS1.Surfacetension(γ)isothermsofpureSDSsolution(●)andSDSsolutionwith0.01MNaCladdition(○)measuredusingthecaptivebubblemethodafter10minstabilizationofthebubble.Errorbarsshowthestandarddeviation.

2S3SDSadsorptionattheair-waterinterface.TheadsorptionofSDSattheair-waterinterfacecanbecalculatedusingthesurfacetensionisothermandtheGibbsequation:???(S2)?=?2????whereτisthesurfactantconcentrationattheinterface(perunitsurface),Cisthesurfactantconcentrationinsolution,γissurfacetension,Tistemperature(K)andRisthegasconstant(8.31J/K·mol).TheSDSadsorptionisothermfortheair-waterinterfaceisshowninFig.S2.43)22mol/mτ(μ100246810SDS(mM)SDSSDSin0.01MNaClMetastablebubblesFigureS2.SDSadsorptionisotherm(τ,mol/m2)fortheair-waterinterfaceofpureSDSsolution(●)andSDSsolutionwith0.01MNaCladdition(○)calculatedusingtheSDSsurfacetensionisotherm(Fig.S1)andGibbsequation(Eq.S2).Arrowsindicateconcentrationsatwhichbubbleinteractionchangesfromclearattachmenttometastable.Modelsurfacecharacteristics.VariationinsurfaceroughnesswasdeterminedwithAFM(Fig.S3).Silica,TMSCandcellulosesurfaceswereverysmooth;roughnessvariationwasonly2nmforsilicasurfacesandTMSCand3nmforcellulose.ThepartiallydesilylatedTMSCsurface(θD=75°)hadthehighestroughnessvariationof12nmandformationofsphericalagglomerateswasobserved.

3S4a)Si-OHSi-CH3TMSCPDTMSCCelluloseRMS:0.4nm3.4nm4.4nm18.4nm1.5nm(1x1μm;z-scale,2nm)(1x1μm;z-scale,5nm)b)2.0c)8.01.04.0nm0.0nm0.0-1.0-4.0-2.0-8.00.01.02.03.04.05.00.01.02.03.04.05.0μmμmSi-OHSi-CH3PartlydesilylatedTMSCCelluloseTMSCFigureS3.a)AFMimagesofthemodelsurfaceswithcalculatedRMSvalues.b,c)Roughnessvariation(heightprofile)ofhydrophilic(Si-OH,blue)andhydrophobic(Si-CH3,black)silica,partiallydesilylatedTMSC(green),cellulose(orange)andTMSC(red)surface.

4S5SDSisothermsforadsorptiononthemodelsurfacesa)b)6080Si-OHSi-OH406020)0.7mM6-40?f07.0mM20-2070.0mM?D(1070.0mM07.0mM-400.7mM-60-200500100015002000250005001000150020002500Time(s)Time(s)c)d)6080CelluloseCellulose406020)6-40?f00.7mM7.0mM20-2070.0mM?D(1070.0mM7.0mM-4000.7mM-60-200500100015002000250005001000150020002500Time(s)Time(s)FigureS4.SDSisothermsforadsorptionona-b)hydrophilicsilica(Si-OH)andc-d)cellulosedeterminedwithQCM-D.SDShadconcentrationsof0.7,7.0and70.0mM.Dataisillustratedasathirdovertonenumber(n=3).?fisthechangeinoscillationfrequencyinHz,and?Disthedissipation.Norisingstepwasincludedinthemeasurement.TableS1.QCM-DdataforSDSadsorptionondifferentmodelsurfacesafter10minofstartingtheSDSfeed.0.7mMSDSSurfaceCA(°)?f,600s?D,600s?m(ng/cm2)?m(μmol/m2)h(nm)Si-OH10-1.00.005.90.200.05Si-CellOH25-1.70.0910.10.340.09Si-CH3100-2.40.0814.40.490.1393-18.336.90108.03.701.00Si-TMSC7.0mMSDS

5S6SurfaceCA(°)?f,600s?D,600s?m(ng/cm2)?m(μmol/m2)h(nm)Si-OH10-1.60.269.70.330.09Si-CellOH25-4.50.4826.50.900.25Si-CH3100-4.00.2623.60.800.22-16.17.395.03.200.88Si-TMSC9370.0mMSDSSurfaceCA(°)?f,600s?D,600s?m(ng/cm2)?m(μmol/m2)h(nm)Si-OH10-12.09.5970.82.410.66Si-CellOH25-18.64.95109.93.741.02Si-CH3100-24.39.74143.64.881.3341.738.5-246.0-8.40-2.28Si-TMSC93Bubbleadhesiononpartiallyregeneratedcellulose.EventhoughbubblesdidnotpermanentlyattachtothesurfacewhenθDwasabout65°orbelow(inwater),therewasclearadhesiontothesurfacewhenthebubblewasremoved.Fig.S5showsbubbleelongationduringretractionfromthesurface.Inthesecases,thebubbleadhesiontotheneedlewasstrongerthantheadhesiontothesurface.AtaθDof65°(inwater)theelongationwasover500μmbeforedetachment.Adhesiontothesurfacedecreasedasthesurfacehydrophobicitydecreased,andwithpurecellulosesurfacestheadhesionwasnegligible.Also,thepresenceofSDS(1.0mM)decreasedtheadhesiontonegligiblevalues.Theeffectoftheneedleonbubblebehaviorisanunfortunatedrawbackofthecaptivebubblemethodusedinthisstudy.Bubblesareknowntoattachreadilytomineralparticles,suchasmolybdenite,graphite,withmoderatehydrophobicity(θD=60°?70°),showingthesamevaluesforθBand100%attachmentprobability.Modificationofthesurfaceswithdepressants,likexanthangumandCMC,decreasebothθB(40°?50°)andtheattachmentprobabilityandthetimescaleofwettingfilmrupture(Koretal.2014;Krasowskaetal.2019;Wuetal.2015).Itispossiblethatpartlyregeneratedcellulosewithmoderatehydrophobicitywouldshowasimilarlowattachmentprobabilityiffreebubblesandalongenoughstabilizationtimeforthefilmruptureareused.Inthisstudy,onlyfullyattachedbubbleswereconsideredinthetheoreticalcalculations.

6S7600400200Bubbleelongation(μm)01009080706050403020θDwater,72.8mN/m1.0mMSDS,65mN/m2.4mMSDS,50mN/mFigureS5.Bubbleelongationduringremovalfromthesurfaceasafunctionofsurfacedropcontactangle(sessiledrop,θD).Si-TMSCandpartiallyregeneratedTMSCsurfacesmeasuredwithwater(blackdiamond),1.0mMofSDS(whitediamond)and2.4mMofSDS(greydiamond).Changesininterfaceandsurfaceenergiesduetoanattachingbubble.Thevariousenergycomponentsaffectedbybubbleattachmentincludetheliquid-vapor(LV)interfaceenergyofthebubble,thesolid-liquid(SL)energy,andthesolid-vapor(SV)energy.Below,weanalyzethedifferentenergycomponentsindetailanddevelopanequationforthetotalenergychangeinbubbleattachment(Gualda&Ghiorso2007).Ouranalysisincludesonlythesurfaceenergycomponentsandnot,forexample,anyelectricalenergyrelatedtothechargespresentinthesystem.BubbleinterfaceenergyFig.S6showsthegeometryofanattachedbubble.Iftheradiusofthesphereisr,andtheheightofthecapish,thenthevolumeofthesphericalcapis??2(S3)????=(3???)3andthecurvedsurfaceareaofthesphericalcapis????=2???(S4)

7S8Bygeometry,?=?(1?????)(S5)haθrFigureS6.Geometryofanattachedbubble.Whenabubbleattachestoasurface,theairvolume??ofthebubbleremainsroughlyconstant.Inotherwords,43(S6)??=???????3UsingEqs.(S3)and(S5),Eq.(S6)canbewrittenas43??2??22??3??=???(3???)=[4???(1?????)(2+????)]=?(?)(S7)3333where?(?)=4?(1?????)2(2+????)=2+3????????3?(S8)Thus,(S9)33???=√??(?)Theinterfaceareaoftheattachedbubbleis?=4??2??=2??2(1+cos?)(S10)???????????

8S9Thebubbleradiusofthefreebubbleis(S11)33????=√4?anditsinterfaceareais?=4??2(S12)??Thereductioninbubbleinterfaceenergyduetoattachmentonasurfaceis3?2/3??=?(???)=??(?)[41/3?2?(?)?2/3(1+????)]????????(S13)where?istheliquid-vaporsurfacetension.SolidsurfaceenergychangeOtherenergychangesarerelatedtothesurfaceenergiesatthebubble-solidcontact.Thecontactareaisgivenby?=??2???2?(S14)????Whenthebubbleattachestothesolidsurface,thereductioninthesurfaceenergyis??????=?????(???????)(S15)Moreover,duringdewettingthesurfaceenergiessatisfy(Makkonen2017)???=2?????cos(??)(S16)where??istherecedingcontactangle,whichforabubbleattachmentagreeswith?.FromEqs.(S9)and(S14?16)weobtain23??32))(S17)??????=?()????(????γcos(????(?)Thetheoreticaltotalenergyreductionoftheattachedbubble(?????)isobtainedbysummingupEqs.(S13)and(S17):23?122(S18)?3?2?2?????=?(){?[43??(?)3(2+????(2+????))]+????(?)3????}?

9S10TheeffectofSDSconcentrationandsurfacetensionontheΔEtotfrombubbleattachmenttonon-attachmentisshowninFigS7.Inwater,ΔEtotwas208nJ,andtheadditionofSDSdecreasedthisvalue.AsteepdecreaseinΔEtotoccurredaftercSDSof3.5mM(γ=45mN/m),whentheair-waterinterfaceisalmostfullycoveredwithSDS(Fig.S2)andhemimicellesformontheSi-CH3surface.AfterΔEtotof45nJatγ=40mN/m(cSDS≈CMC)nobubbleattachmentoccurred,andthesystemhadreacheditsenergyminimum.250200)nJ150(tot?E100500807060504030γ(mN/m)SDSSDS+0.01MNaClFigureS7.Experimentaltransitionfromnon-attachmenttoattachmentasafunctionoftotalsurfaceenergyofthesystem(ΔEtot)andsurfacetension(γ).ReferencesFainerman,V.B.etal.(2010)“SurfaceTensionIsotherms,AdsorptionDynamicsandDilationalVisco-ElasticityofSodiumDodecylSulphateSolutions.”ColloidsSurf.A:Physicochem.Eng.Aspects354(1–3):8–15.Gualda,G.A.R.andGhiorso,M.S.(2007)“MagnetiteScavengingandtheBuoyancyofBubblesinMagmas.Part2:EnergeticsofCrystal-BubbleAttachmentinMagmas.”ContributionstoMineralogyandPetrology154(4):479–490.http://link.springer.com/10.1007/s00410-007-0206-8.Johansson,L.-S.etal.(2011)“ExperimentalEvidenceonMediumDrivenCelluloseSurface

10S11AdaptationDemonstratedUsingNanofibrillatedCellulose.”SoftMatter7(22):10917.http://xlink.rsc.org/?DOI=c1sm06073b.Kaelble,D.H.(1970)“Dispersion-PolarSurfaceTensionPropertiesofOrganicSolids.”J.Adhesion2(2):66–81.Kor,M.etal.(2014)“CarboxymethylcelluloseAdsorptiononMolybdenite:TheEffectofElectrolyteCompositiononAdsorption,Bubble-SurfaceCollisions,andFlotation.”Langmuir30(40):11975–84.Krasowska,M.etal.(2019)“ControllingBubble-SolidSurfaceInteractionswithEnvironmentallyBenignInterfacialModifiers.”J.Phys.Chem.C123(6):3645–56.Lin,S.-Y.etal.(1999)“AStudyoftheEquilibriumSurfaceTensionandtheCriticalMicelleConcentrationofMixedSurfactantSolutions.”Langmuir15(13):4370?4376.https://pubs.acs.org/doi/abs/10.1021/la981149f.Lindman,B.,Karlstr?m,G.andStigsson,L.(2010)“OntheMechanismofDissolutionofCellulose.”J.MolecularLiquids156(1):76–81.http://dx.doi.org/10.1016/j.molliq.2010.04.016.Makkonen,L.(2017)“AThermodynamicModelofContactAngleHysteresis.J.Chem.Phys.147(6):064703.Mohan,T.etal.(2011)“WettabilityandSurfaceCompositionofPartlyandFullyRegeneratedCelluloseThinFilmsfromTrimethylsilylCellulose.”J.ColloidInterfaceSci.358(2):604–10.http://dx.doi.org/10.1016/j.jcis.2011.03.022.Owens,D.K.andWendt,R.C.(1969)“EstimationoftheSurfaceFreeEnergyofPolymers.”J.AppliedPolymerSci.13(8):1741–47.http://doi.wiley.com/10.1002/app.1969.070130815.Wu,J.etal.(2015)“Bubble–SurfaceInteractionswithGraphiteinthePresenceofAdsorbedCarboxymethylcellulose.”SoftMatter11(3):587–99.http://xlink.rsc.org/?DOI=C4SM02380C.

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動(dòng)畫的文件,查看預(yù)覽時(shí)可能會(huì)顯示錯(cuò)亂或異常,文件下載后無此問題,請(qǐng)放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對(duì)本文檔版權(quán)有爭議請(qǐng)及時(shí)聯(lián)系客服。
3. 下載前請(qǐng)仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時(shí)可能由于網(wǎng)絡(luò)波動(dòng)等原因無法下載或下載錯(cuò)誤,付費(fèi)完成后未能成功下載的用戶請(qǐng)聯(lián)系客服處理。
關(guān)閉