資源描述:
《大學(xué)經(jīng)典課件之高等數(shù)學(xué)——8-2偏導(dǎo)數(shù).pdf》由會(huì)員上傳分享,免費(fèi)在線(xiàn)閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫(kù)。
1、第八章第二節(jié)偏導(dǎo)數(shù)一、偏導(dǎo)數(shù)的定義及計(jì)算二、偏導(dǎo)數(shù)的幾何意義三、高階偏導(dǎo)數(shù)機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束一、偏導(dǎo)數(shù)的定義及計(jì)算定義:設(shè)函數(shù)z=f(x,y)在點(diǎn)P(x,y)的某一鄰域000內(nèi)有定義,將y固定為y,給x以增量Δx,相應(yīng)地函00數(shù)有增量Δz=f(x+Δx,y)?f(x,y)x0000若極限f(x+Δx,y)?f(x,y)0000limΔx→0Δx存在,則稱(chēng)此極限為函數(shù)z=f(x,y)在點(diǎn)(x,y)處對(duì)x00的偏導(dǎo)數(shù),記為?z?f,z′x=x0,或f′(x,y),xy=yx00x=x?xx=x00?x0y=yy=y00機(jī)動(dòng)目錄上頁(yè)下頁(yè)返
2、回結(jié)束同理可定義函數(shù)z=f(x,y)在點(diǎn)(x,y)處對(duì)y的偏00導(dǎo)數(shù),定義為f(x,y+Δy)?f(x,y)0000limΔy→0Δy?z?f記為,,z′yx=x0或fy′(x0,y0).?yx=x0?yx=x0y=y0y=y0y=y0機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束如果函數(shù)z=f(x,y)在區(qū)域D內(nèi)任一點(diǎn)(x,y)處對(duì)x的偏導(dǎo)數(shù)都存在,那么這個(gè)偏導(dǎo)數(shù)就是x、y的函數(shù),它就稱(chēng)為函數(shù)z=f(x,y)對(duì)自變量x的偏導(dǎo)數(shù),記作?z?f,,z′或f′(x,y).xx?x?x同理可以定義函數(shù)z=f(x,y)對(duì)自變量y的偏導(dǎo)數(shù),記作?z?f,,z′或f′(x
3、,y).yy?y?y機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束偏導(dǎo)數(shù)的概念可以推廣到二元以上函數(shù)如在u=f(x,y,z)(x,y,z)處f(x+Δx,y,z)?f(x,y,z)f′(x,y,z)=lim,xΔx→0Δxf(x,y+Δy,z)?f(x,y,z)f′(x,y,z)=lim,yΔy→0Δyf(x,y,z+Δz)?f(x,y,z)f′(x,y,z)=lim.zΔz→0Δz機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束22例1求z=x+3xy+y在點(diǎn))2,1(處的偏導(dǎo)數(shù).?z?z解=2x+3y;=3x+2y.?x?y?z∴x=1=2×1+3×2=,8?xy=2?z=3×1
4、+2×2=.7x=1?yy=2機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束y例2設(shè)z=x(x>,0x≠)1,求證x?z1?z+=2z.y?xlnx?y?zy?1?zy證=yx,=xlnx,?x?yx?z1?zxy?11y+=yx+xlnxy?xlnx?yylnxyy=x+x=2z.原結(jié)論成立.機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束例3已知理想氣體的狀態(tài)方程pV=RT?p?V?T(R為常數(shù)),求證:??=?1.?V?T?pRT?pRT證p=?=?;2V?VVRT?VRpV?TVV=?=;T=?=;p?TpR?pR?p?V?TRTRVRT??=???=?=?.12?V?T?p
5、VpRpV機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束有關(guān)偏導(dǎo)數(shù)的幾點(diǎn)說(shuō)明:?u1、偏導(dǎo)數(shù)是一個(gè)整體記號(hào),不能拆分;?x2、求分界點(diǎn)、不連續(xù)點(diǎn)處的偏導(dǎo)數(shù)要用定義求;機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束?xy?22(x,y)≠)0,0(例4設(shè)f(x,y)=?x+y??0(x,y)=)0,0(求f(x,y)的偏導(dǎo)數(shù).解當(dāng)(x,y)≠)0,0(時(shí),2222y(x+y)?2x?xyy(y?x)f′(x,y)==,x222222(x+y)(x+y)2222x(x+y)?2y?xyx(x?y)f′(x,y)==,y222222(x+y)(x+y)機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束當(dāng)(x,y)
6、=)0,0(時(shí),按定義可知:f(Δx)0,?f)0,0(0f′)0,0(=lim=lim=,0xΔx→0ΔxΔx→0Δxf,0(Δy)?f)0,0(0f′)0,0(=lim=lim=,0yΔy→0ΔyΔy→0Δy22?y(y?x)?(x,y)≠)0,0(222fx′(x,y)=?(x+y),??0(x,y)=)0,0(22?x(x?y)?(x,y)≠)0,0(222fy′(x,y)=?(x+y).??0(x,y)=)0,0(機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束即f(x,y)在)0,0(點(diǎn)的兩個(gè)偏導(dǎo)數(shù)都存在,但2x1limf(x,y)=lim=≠f)0
7、,0(22x→,0y→,0x=yx→,0y=xx+x2即f(x,y)在)0,0(點(diǎn)不連續(xù)。例4說(shuō)明:多元函數(shù)在某點(diǎn)的偏導(dǎo)數(shù)都存在并不能保證此函數(shù)在這一點(diǎn)是連續(xù)的。偏導(dǎo)數(shù)存在與連續(xù)的關(guān)系一元函數(shù)中在某點(diǎn)可導(dǎo)連續(xù)多元函數(shù)中在某點(diǎn)偏導(dǎo)數(shù)存在連續(xù)機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束?2x=x0或y=y0例5設(shè)f(x,y)=??1其它顯然f(x,y)在(x,y)00處不連續(xù),但f(x,y)=0x00f(x,y)=0y000偏導(dǎo)數(shù)存在。?(x,y)00機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束二.偏導(dǎo)數(shù)的幾何意義z復(fù)習(xí)一元函數(shù)導(dǎo)數(shù)Txz=f(x,y)Lz=f(x,y)?zf(x0
8、+Δx,y0)?f(x0,y0)=lim?xΔx→0ΔxMM固定y=y0得曲線(xiàn)y=y0?z=f(x,y)0L:?y=y?0由一元函數(shù)導(dǎo)數(shù)的幾何意義:y(xy,)?z00=tanα?xMx?zα