倍角公式,推導(dǎo)和差化積及積化和差公式學(xué)習(xí)專用.doc

倍角公式,推導(dǎo)和差化積及積化和差公式學(xué)習(xí)專用.doc

ID:57694293

大小:148.50 KB

頁數(shù):2頁

時間:2020-09-01

倍角公式,推導(dǎo)和差化積及積化和差公式學(xué)習(xí)專用.doc_第1頁
倍角公式,推導(dǎo)和差化積及積化和差公式學(xué)習(xí)專用.doc_第2頁
資源描述:

《倍角公式,推導(dǎo)和差化積及積化和差公式學(xué)習(xí)專用.doc》由會員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫

1、第二十四教時教材:倍角公式,推導(dǎo)“和差化積”及“積化和差”公式目的:繼續(xù)復(fù)習(xí)鞏固倍角公式,加強(qiáng)對公式靈活運(yùn)用的訓(xùn)練;同時,讓學(xué)生推導(dǎo)出和差化積和積化和差公式,并對此有所了解。過程:一、復(fù)習(xí)倍角公式、半角公式和萬能公式的推導(dǎo)過程:例一、已知,,tana=,tanb=,求2a+b[來源:學(xué),科,網(wǎng)Z,X,X,K](《教學(xué)與測試》P115例三)解:∴又∵tan2a<0,tanb<0∴,∴∴2a+b=例二、已知sina-cosa=,,求和tana的值解:∵sina-cosa=∴化簡得:∴∵∴∴即二、積化和差公式的推導(dǎo)sin(a+b)+sin(a-b)=2si

2、nacosbTsinacosb=[sin(a+b)+sin(a-b)]sin(a+b)-sin(a-b)=2cosasinbTcosasinb=[sin(a+b)-sin(a-b)]cos(a+b)+cos(a-b)=2cosacosbTcosacosb=[cos(a+b)+cos(a-b)]cos(a+b)-cos(a-b)=-2sinasinbTsinasinb=-[cos(a+b)-cos(a-b)]這套公式稱為三角函數(shù)積化和差公式,熟悉結(jié)構(gòu),不要求記憶,它的優(yōu)點(diǎn)在于將“積式”化為“和差”,有利于簡化計(jì)算。(在告知公式前提下)例三、求證:sin

3、3asin3a+cos3acos3a=cos32a證:左邊=(sin3asina)sin2a+(cos3acosa)cos2a=-(cos4a-cos2a)sin2a+(cos4a+cos2a)cos2a=-cos4asin2a+cos2asin2a+cos4acos2a+cos2acos2a=cos4acos2a+cos2a=cos2a(cos4a+1)=cos2a2cos22a=cos32a=右邊時間像小馬車教學(xué)反思∴原式得證三、和差化積公式的推導(dǎo)教學(xué)質(zhì)量綜合測評若令a+b=q,a-b=φ,則,代入得:材料科學(xué)概論試題[來源:學(xué).科.網(wǎng)][來源:

4、學(xué)&科&網(wǎng)]改革開放的歷史性標(biāo)志這套公式稱為和差化積公式,其特點(diǎn)是同名的正(余)弦才能使用,它與積化和差公式相輔相成,配合使用。例四、例五、《春雨》閱讀答案小學(xué)已知cosa-cosb=,sina-sinb=,求sin(a+b)的值[來源:1ZXXK]推進(jìn)一帶一路建設(shè)既要解:∵cosa-cosb=,∴①夢結(jié)束的地方閱讀短文及答案sina-sinb=,∴②四、五、曇花教學(xué)實(shí)錄小結(jié):和差化積,積化和差六、七、概率論期末試卷及答案作業(yè):《課課練》P36—37例題推薦1—3[來源:1ZXXK]任務(wù)標(biāo)題P38—39例題推薦1—3P40例題推薦1—3

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進(jìn)行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費(fèi)完成后未能成功下載的用戶請聯(lián)系客服處理。