資源描述:
《構(gòu)建建模意識(shí)培養(yǎng)創(chuàng)新思維 》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、構(gòu)建建模意識(shí)培養(yǎng)創(chuàng)新思維【摘要】提高中學(xué)數(shù)學(xué)教學(xué)質(zhì)量,不僅僅是為了提高學(xué)生的數(shù)學(xué)成績(jī),更重要的是能使學(xué)生學(xué)到有用的數(shù)學(xué)。為此,筆者認(rèn)為在中學(xué)數(shù)學(xué)教學(xué)中構(gòu)建數(shù)學(xué)建模意識(shí)無(wú)疑是我們中學(xué)數(shù)學(xué)教學(xué)改革的一個(gè)正確的方向。本文結(jié)合自己的教學(xué)體會(huì),從理論上及實(shí)踐上闡述:一是構(gòu)建數(shù)學(xué)建模意識(shí)的基本方法。二是通過(guò)建模教學(xué)培養(yǎng)學(xué)生的創(chuàng)新思維。 【關(guān)鍵詞】數(shù)學(xué)建模數(shù)學(xué)模型方法數(shù)學(xué)建模意識(shí)創(chuàng)新思維 一、數(shù)學(xué)建模與數(shù)學(xué)建模意識(shí) 著名數(shù)學(xué)家懷特海曾說(shuō):“數(shù)學(xué)就是對(duì)于模式的研究”。 所謂數(shù)學(xué)模型,是指對(duì)于現(xiàn)實(shí)世界的某一特定
2、研究對(duì)象,為了某個(gè)特定的目的,在做了一些必要的簡(jiǎn)化假設(shè),運(yùn)用適當(dāng)?shù)臄?shù)學(xué)工具,并通過(guò)數(shù)學(xué)語(yǔ)言表述出來(lái)的一個(gè)數(shù)學(xué)結(jié)構(gòu),數(shù)學(xué)中的各種基本概念,都以各自相應(yīng)的現(xiàn)實(shí)原型作為背景而抽象出來(lái)的數(shù)學(xué)概念。各種數(shù)學(xué)公式、方程式、定理、理論體系等等,都是一些具體的數(shù)學(xué)模型。而通過(guò)對(duì)問(wèn)題數(shù)學(xué)化,模型構(gòu)建,求解檢驗(yàn)使問(wèn)題獲得解決的方法稱之為數(shù)學(xué)模型方法。我們的數(shù)學(xué)教學(xué)說(shuō)到底實(shí)際上就是教給學(xué)生前人給我們構(gòu)建的一個(gè)個(gè)數(shù)學(xué)模型和怎樣構(gòu)建模型的思想方法,以使學(xué)生能運(yùn)用數(shù)學(xué)模型解決數(shù)學(xué)問(wèn)題和實(shí)際問(wèn)題。 具體的講數(shù)學(xué)模型方法的操作程序大致上為:
3、 由此,我們可以看到,培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)建模解決實(shí)際問(wèn)題的能力關(guān)鍵是把實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題,必須首先通過(guò)觀察分析、提煉出實(shí)際問(wèn)題的數(shù)學(xué)模型,然后再把數(shù)學(xué)模型納入某知識(shí)系統(tǒng)去處理,這不但要求學(xué)生有一定的抽象能力,而且要有相當(dāng)?shù)挠^察、分析、綜合、類比能力。學(xué)生的這種能力的獲得不是一朝一夕的事情,需要把數(shù)學(xué)建模意識(shí)貫穿在教學(xué)的始終,也就是要不斷的引導(dǎo)學(xué)生用數(shù)學(xué)思維的觀點(diǎn)去觀察、分析和表示各種事物關(guān)系、空間關(guān)系和數(shù)學(xué)信息,從紛繁復(fù)雜的具體問(wèn)題中抽象出我們熟悉的數(shù)學(xué)模型,進(jìn)而達(dá)到用數(shù)學(xué)模型來(lái)解決實(shí)際問(wèn)題,使數(shù)學(xué)建模意識(shí)
4、成為學(xué)生思考問(wèn)題的方法和習(xí)慣?! 《?、構(gòu)建數(shù)學(xué)建模意識(shí)的基本途徑 1.為了培養(yǎng)學(xué)生的建模意識(shí),中學(xué)數(shù)學(xué)教師應(yīng)首先需要提高自己的建模意識(shí)。這不僅意味著我們?cè)诮虒W(xué)內(nèi)容和要求上的變化,更意味著教育思想和教學(xué)觀念的更新。中學(xué)數(shù)學(xué)教師除需要了解數(shù)學(xué)科學(xué)的發(fā)展歷史和發(fā)展動(dòng)態(tài)之外,還需要不斷地學(xué)習(xí)一些新的數(shù)學(xué)建模理論,并且努力鉆研如何把中學(xué)數(shù)學(xué)知識(shí)應(yīng)用于現(xiàn)實(shí)生活?! ?.數(shù)學(xué)建模教學(xué)還應(yīng)與現(xiàn)行教材結(jié)合起來(lái)研究。教師應(yīng)研究在各個(gè)教學(xué)章節(jié)中可引入哪些模型問(wèn)題。要經(jīng)常滲透建模意識(shí),這樣通過(guò)教師的潛移默化,學(xué)生可以從各類大
5、量的建模問(wèn)題中逐步領(lǐng)悟到數(shù)學(xué)建模的廣泛應(yīng)用,從而激發(fā)學(xué)生去研究數(shù)學(xué)建模的興趣,提高他們運(yùn)用數(shù)學(xué)知識(shí)進(jìn)行建模的能力?! ?.注意與其它相關(guān)學(xué)科的關(guān)系。由于數(shù)學(xué)是學(xué)生學(xué)習(xí)其它自然科學(xué)以至社會(huì)科學(xué)的工具而且其它學(xué)科與數(shù)學(xué)的聯(lián)系是相當(dāng)密切的。因此我們?cè)诮虒W(xué)中應(yīng)注意與其它學(xué)科的呼應(yīng),這不但可以幫助學(xué)生加深對(duì)其它學(xué)科的理解,也是培養(yǎng)學(xué)生建模意識(shí)的一個(gè)不可忽視的途徑。這樣的模型意識(shí)不僅僅是抽象的數(shù)學(xué)知識(shí),而且將對(duì)他們學(xué)習(xí)其它學(xué)科的知識(shí)以及將來(lái)用數(shù)學(xué)建模知識(shí)探討各種邊緣學(xué)科產(chǎn)生深遠(yuǎn)的影響。 4.在教學(xué)中還要結(jié)合專題討論與建模
6、法研究。我們可以選擇適當(dāng)?shù)慕n},通過(guò)討論、分析和研究,熟悉并理解數(shù)學(xué)建模的一些重要思想,掌握建模的基本方法。甚至可以引導(dǎo)學(xué)生通過(guò)對(duì)日常生活的觀察,自己選擇實(shí)際問(wèn)題進(jìn)行建模練習(xí),從而讓學(xué)生嘗到數(shù)學(xué)建模成功的“甜”和難于解決的“苦”借亦拓寬視野、增長(zhǎng)知識(shí)、積累經(jīng)驗(yàn)。這亦符合玻利亞的“主動(dòng)學(xué)習(xí)原則”,也正所謂“學(xué)問(wèn)之道,問(wèn)而得,不如求而得之深固也”?! ∪褬?gòu)建數(shù)學(xué)建模意識(shí)與培養(yǎng)學(xué)生創(chuàng)造性思維過(guò)程統(tǒng)一起來(lái) 我認(rèn)為培養(yǎng)學(xué)生創(chuàng)造性思維的過(guò)程有三點(diǎn)基本要求。第一,對(duì)周圍的事物要有積極的態(tài)度。第二,要敢于提出
7、問(wèn)題。第三,善于聯(lián)想,善于理論聯(lián)系實(shí)際。因此在數(shù)學(xué)教學(xué)中構(gòu)建學(xué)生的建模意識(shí)實(shí)質(zhì)上是培養(yǎng)學(xué)生的創(chuàng)造性思維能力,因?yàn)榻;顒?dòng)本身就是一項(xiàng)創(chuàng)造性的思維活動(dòng)。它既具有一定的理論性又具有較大的實(shí)踐性;既要求思維的數(shù)量,還要求思維的深刻性和靈活性,而且在建?;顒?dòng)過(guò)程中,能培養(yǎng)學(xué)生獨(dú)立,自覺(jué)地運(yùn)用所給問(wèn)題的條件,尋求解決問(wèn)題的最佳方法和途徑,可以培養(yǎng)學(xué)生的想象能力,直覺(jué)思維、猜測(cè)、轉(zhuǎn)換、構(gòu)造等能力。而這些數(shù)學(xué)能力正是創(chuàng)造性思維所具有的最基本的特征。 1.發(fā)揮學(xué)生的想象能力,培養(yǎng)學(xué)生的直覺(jué)思維 眾所周知,數(shù)學(xué)史上不少的數(shù)學(xué)
8、發(fā)現(xiàn)來(lái)源于直覺(jué)思維,如笛卡爾坐標(biāo)系、費(fèi)爾馬大定理、歌德巴赫猜想、歐拉定理等,應(yīng)該說(shuō)它們不是任何邏輯思維的產(chǎn)物,而是數(shù)學(xué)家通過(guò)觀察、比較、領(lǐng)悟、突發(fā)靈感發(fā)現(xiàn)的。通過(guò)數(shù)學(xué)建模教學(xué),使學(xué)生有獨(dú)到的見解和與眾不同的思考方法,如善于發(fā)現(xiàn)問(wèn)題,溝通各類知識(shí)之間的內(nèi)在聯(lián)系等是培養(yǎng)學(xué)生創(chuàng)新思維的核心?! ?.構(gòu)建建模意識(shí),培養(yǎng)學(xué)生的轉(zhuǎn)換能力 恩格斯曾說(shuō)過(guò):“由一種形式轉(zhuǎn)化為另一種形式不是無(wú)聊的游戲而