函數圖像與變換解讀

函數圖像與變換解讀

ID:26433670

大小:469.50 KB

頁數:6頁

時間:2018-11-27

函數圖像與變換解讀_第1頁
函數圖像與變換解讀_第2頁
函數圖像與變換解讀_第3頁
函數圖像與變換解讀_第4頁
函數圖像與變換解讀_第5頁
資源描述:

《函數圖像與變換解讀》由會員上傳分享,免費在線閱讀,更多相關內容在應用文檔-天天文庫。

1、函數圖像及其變換上海師范大學附屬外國語中學李慶兵函數是整個高中數學的重點和難點,高中階段對函數性質的研究往往是通過研究函數圖像及其變換得到的,所以函數圖像及其變換也就成為高考的固定考點。歷年高考考試大綱中都明確要求,學生要“會運用函數圖像理解和研究函數的性質”,并且與前幾年比較可以發(fā)現,近幾年高考對于函數圖像方面的考查已經不再局限于對幾個常見函數本身的單一的考查,而是結合函數的運算,更為深刻地考查函數與函數、函數與方程、函數與不等式、函數與其他學科或現實生活等方面的聯(lián)系。這就要求我們不僅要熟練掌握一些基本函

2、數的圖像特征及函數圖像變換的幾種常見方法,而且要會靈活運用。下面筆者就結合近幾年的一些高考試題,談一些函數圖像及其變換和應用方面的問題,希望能引起正在忙于備考的高三教師和學子們的重視,并給他們帶來一些啟發(fā)。(一)平移變換及其應用:函數的圖像可以看作是由函數的圖像先向左>0)或向右(<0)平移個單位,再向上>0)或向下(<0)平移個單位得到。如:例1、(2008上海理11)方程的解可視為函數的圖象與函數的圖象交點的橫坐標。若方程的各個實根所對應的點均在直線的同側,則實數的取值范圍是。P(圖一)(圖二)分析:由

3、題意,方程的解可視為函數的圖象與函數的圖象交點的橫坐標。這些交點可以看作是由函數的圖象經過上下平移得到,由圖(1)可知,函數與函數的圖象分別交于點P、Q,且點P在直線上方,點Q在直線下方,要使得方程的各個實根所對應的點均在直線的同側,只須將函數圖像上下平移,將點Q移至函數圖像與直線交點A左側或將點P移至函數圖像與直線交點B右側即可。將點A與點B坐標分別代入方程解得或。從而可得實數的取值范圍是>6或<-6。(二)伸縮變換及其應用:函數的圖像可以看作是由函數的圖像先將橫坐標伸長<1)或縮短>1)到原來的倍,再把

4、縱坐標伸長>1)或縮短<1)到原來的倍即可得到。如:例2、(2008上海文11)在平面直角坐標系中,點的坐標分別為。如果是△ABC圍成的區(qū)域(含邊界)上的點,那么當取得最大值時,點P的坐標是。分析:由變形可得,則問題可轉化為當函數的圖象與△ABC圍成的區(qū)域(含邊界)有公共點時求的最大值的問題。由函數圖像伸縮變換的規(guī)律可知,的值越大,則函數圖象上點的橫縱坐標越大,即圖像整體越向上移動,由此可以判定,當取得最大值時,函數的圖象與△ABC的邊BC相切或過經點C。下面求點P的坐標。法一:由線段BC與函數的解析式聯(lián)立

5、方程組可得消去得方程,由判別式△=0解得,此時,從而得點。即所求點P的坐標是。法二:線段BC的方程為:,則,當且僅當,即所以所求點P的坐標是。(三)對稱變換:函數當中,圖像關于某點或某條直線對稱的情況較多,除函數的奇偶性、互為反函數的兩函數與對稱性有關之外,還經常會出現其他一些情況,這就需要我們能夠掌握“以點代線”的數學方法對具體情況進行分析。常見情況有以下幾種。1、關于特殊直線的軸對稱變換:;;(兩者互為反函數);2、關于特殊點的對稱變換:;3、局部對稱變換:注:以上為兩個函數圖像之間的關系。4、自身對稱

6、變換:若函數y=f(x)滿足則函數y=f(x)的圖像關于直線x=a對稱。特別地,當時,函數為偶函數。若函數y=f(x)滿足,則函數y=f(x)的圖像關于原點成中心對稱。即函數為奇函數。例3、(2005上海理16)設定義域為的函數則關于x的方程有7個不同實數解的充要條件是()A、<0且>0B、>0且<0C、<0且D、且。(圖三)(圖四)分析:函數的圖像是由函數的圖像先向右平移一個單位,得到函數的圖像,再將函數的圖像位于軸上方部分保持不變,下方的部分關于軸通過局部對稱得到。又因為,所以由(圖三)可知,函數圖像與

7、軸有三個公共點。方程中,若<0且,則由可得或。結合函數圖像易知,方程有三個不同的解,方程有四個不同的解,即方程有7個不同實數解。所以選C。值得一提的是,在高考當中,對函數圖像的考查,并不一定考查某一單一的變換,有時可能是幾種變換同時考查。如:例4、(2003上海理16)是定義在區(qū)間上的奇函數,其圖像如圖(四),令,則下列關于函數的敘述正確的是()(A)若<0,則函數的圖像關于原點對稱;(B)若,0<b<2,則方程有大于2的實根;(C)若,b=0,則函數的圖像關于y軸對稱;(D)若,b=2,則方程有3個實根。

8、分析:由圖(2)知,若b≠0,則,此時的圖像不關于原點對稱,所以A選擇支不符合題意。當時,的圖像可由的圖像關于軸對稱,再向下平移個單位得到。此時<0,而,∵>2,而b>-2,∴>0。所以,方程在(2,c)內必有實根,所以B選擇支正確,故選B。當<1且b=2時,方程至多有一個實根,所以C選擇支不符合題意。又當b≤-2時,方程g(x)=0的實根少于三個,所以D選擇支也不符合題意。(四)旋轉變換:圖像的旋轉變換可借助三

當前文檔最多預覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當前文檔最多預覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數學公式或PPT動畫的文件,查看預覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權歸屬用戶,天天文庫負責整理代發(fā)布。如果您對本文檔版權有爭議請及時聯(lián)系客服。
3. 下載前請仔細閱讀文檔內容,確認文檔內容符合您的需求后進行下載,若出現內容與標題不符可向本站投訴處理。
4. 下載文檔時可能由于網絡波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。