資源描述:
《矩陣對(duì)角化淺析》由會(huì)員上傳分享,免費(fèi)在線(xiàn)閱讀,更多相關(guān)內(nèi)容在學(xué)術(shù)論文-天天文庫(kù)。
1、13屆分類(lèi)號(hào):0151.21單位代碼:10452畢業(yè)論文(設(shè)計(jì))矩陣對(duì)角化淺析姓名學(xué)號(hào)年級(jí)專(zhuān)業(yè)數(shù)學(xué)與應(yīng)用數(shù)學(xué)系(院)理學(xué)院指導(dǎo)教師張兆忠2013年3月6日摘要本文利用矩陣的相關(guān)知識(shí),根據(jù)矩陣類(lèi)型的不同,探討了矩陣的對(duì)角化的一些方法.對(duì)于一般矩陣,利用一般方法,先求出矩陣的特征值與特征向量,接著再判斷矩陣是否可對(duì)角化?對(duì)于對(duì)稱(chēng)矩陣,可以將對(duì)稱(chēng)矩陣與二次型聯(lián)系在一起,利用非退化線(xiàn)性替換將二次型化為標(biāo)準(zhǔn)型,從而得到對(duì)角矩陣.對(duì)于對(duì)稱(chēng)矩陣也可以通過(guò)合同變換將對(duì)稱(chēng)矩陣化為對(duì)角矩陣?除此之外,對(duì)于實(shí)對(duì)稱(chēng)矩陣,利用正交變換可得到該
2、矩陣的全部特征值以及對(duì)應(yīng)的正交單位特征向量,從而可得到對(duì)角矩陣?綜上所述,將矩陣對(duì)角化,可以用一般方法,配方法,合同變化法,用正交變化法或者使用其他方法解答,這取決于題目的要求?對(duì)角矩陣在理論研究和實(shí)際應(yīng)用中有著重要的意義.木文將從利用特征值求行列式的值,求方陣的高次幕,利用特征值和特征向量反求矩陣,判斷矩陣是否相似以及可對(duì)角化矩陣在向量空間和線(xiàn)性變換問(wèn)題等方面,通過(guò)分析與舉例,闡述可對(duì)角化矩陣的應(yīng)用.關(guān)鍵詞:特征值;特征向量;配方法;合同變換法;正交變換法ABSTRACTInthispaper,wediscusss
3、omemethodsofmatrixdiagonalizationwhichdependonthematrixtypebyusingtheknowledgeofmatrix.Forgeneralmatrix,wefindthecharacteristicvalueandcharacteristicvectorofthematrixfirstlyandthenjudgewhetherthematrixcanbediagonalizedbyusingthegeneralmethod.Forsymmetricmatrix,
4、symmetricmatrixcanbelinkedwithquadraticform,i.e.usingthenon-degeneratelineartransformationtochangequadricformintocanonicalformandthenresultinadiagonalmatrix.Forsymmetricmatrix,wealsousecontragradienttransformationofmatrixtotransformsymmetricmatrixintoadiagonalm
5、atrix.Inaddition,forrealsymmetricmatrices,allcharacteristicvaluesofthematrixandthecorrespondingorthonormalcharacteristicvectorcanbeobtainedbyusingtheorthogonaltransformationandthenobtainadiagonalmatrix.Aboveall,thematrixdiagonalizationcanusegeneralmethods,metho
6、dsofcompletingsquare,methodsofcongruenttransformation,methodsoforthogonaltransformationorothermethodswhichdependontherequirementsofthesubject.Thediagonalmatrixhasimportantsignificanceintheoreticalresearchandpracticalapplication.Thispapertheapplicationofmatrixdi
7、agonalizationwillbedescribedfromobtainingthevalueofdeterminantbyusingcharacteristicvalue,obtainingthehigherpowerofsquarematrix,obtainingmatrixbyusingthecharacteristicvalueandcharacteristicvector,judgingwhetherthematrixwassimilarandusingdiagonalizablematrixinvec
8、torspaceandlineartransformationandsoonbyanalysingandusingexamples.Keywords:characteristicvalue;characteristicvector;themethodofcompletingsquare;themethodofcongruenttransform