資源描述:
《希爾伯特的23個問題》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、數(shù)學(xué)史話之——希爾伯特的23個問題希爾伯特(HilbertD.,1862.1.23~1943.2.14)是二十世紀(jì)上半葉德國乃至全世界最偉大的數(shù)學(xué)家之一。他在橫跨兩個世紀(jì)的六十年的研究生涯中,幾乎走遍了現(xiàn)代數(shù)學(xué)所有前沿陣地,從而把他的思想深深地滲透進(jìn)了整個現(xiàn)代數(shù)學(xué)。希爾伯特是哥廷根數(shù)學(xué)學(xué)派的核心,他以其勤奮的工作和真誠的個人品質(zhì)吸引了來自世界各地的年青學(xué)者,使哥廷根的傳統(tǒng)在世界產(chǎn)生影響。希爾伯特去世時,德國《自然》雜志發(fā)表過這樣的觀點:現(xiàn)在世界上難得有一位數(shù)學(xué)家的工作不是以某種途徑導(dǎo)源于希爾伯特的工作。他像是數(shù)學(xué)世界的亞歷山大,在整個數(shù)學(xué)版圖上,留下了他那顯赫的名字?! ?900年
2、,希爾伯特在巴黎數(shù)學(xué)家大會上提出了23個最重要的問題供二十世紀(jì)的數(shù)學(xué)家們?nèi)パ芯浚@就是著名的"希爾伯特23個問題"?! ?975年,在美國伊利諾斯大學(xué)召開的一次國際數(shù)學(xué)會議上,數(shù)學(xué)家們回顧了四分之三個世紀(jì)以來希爾伯特23個問題的研究進(jìn)展情況。當(dāng)時統(tǒng)計,約有一半問題已經(jīng)解決了,其余一半的大多數(shù)也都有重大進(jìn)展?! ?976年,在美國數(shù)學(xué)家評選的自1940年以來美國數(shù)學(xué)的十大成就中,有三項就是希爾伯特第1、第5、第10問題的解決。由此可見,能解決希爾伯特問題,是當(dāng)代數(shù)學(xué)家的無上光榮?! ∠旅嬲浀氖?987年出版的《數(shù)學(xué)家小辭典》以及其它一些文獻(xiàn)中收集的希爾伯特23個問題及其解決情況:?
3、1.連續(xù)統(tǒng)假設(shè)1874年,康托猜測在可列集基數(shù)和實數(shù)基數(shù)之間沒有別的基數(shù),這就是著名的連續(xù)統(tǒng)假設(shè)。1938年,哥德爾證明了連續(xù)統(tǒng)假設(shè)和世界公認(rèn)的策梅洛--弗倫克爾集合論公理系統(tǒng)的無矛盾性。1963年,美國數(shù)學(xué)家科亨證明連續(xù)假設(shè)和策梅洛--倫克爾集合論公理是彼此獨立的。因此,連續(xù)統(tǒng)假設(shè)不能在策梅洛--弗倫克爾公理體系內(nèi)證明其正確性與否。希爾伯特第1問題在這個意義上已獲解決。?2.算術(shù)公理的相容性歐幾里得幾何的相容性可歸結(jié)為算術(shù)公理的相容性。希爾伯特曾提出用形式主義計劃的證明論方法加以證明。1931年,哥德爾發(fā)表的不完備性定理否定了這種看法。1936年德國數(shù)學(xué)家根茨在使用超限歸納法的條
4、件下證明了算術(shù)公理的相容性。?1988年出版的《中國大百科全書》數(shù)學(xué)卷指出,數(shù)學(xué)相容性問題尚未解決。?3.兩個等底等高四面體的體積相等問題?問題的意思是,存在兩個等邊等高的四面體,它們不可分解為有限個小四面體,使這兩組四面體彼此全等。M.W.德恩1900年即對此問題給出了肯定解答。?4.兩點間以直線為距離最短線問題此問題提得過于一般。滿足此性質(zhì)的幾何學(xué)很多,因而需增加某些限制條件。1973年,蘇聯(lián)數(shù)學(xué)家波格列洛夫宣布,在對稱距離情況下,問題獲得解決。?《中國大百科全書》說,在希爾伯特之后,在構(gòu)造與探討各種特殊度量幾何方面有許多進(jìn)展,但問題并未解決。?5.一個連續(xù)變換群的李氏概念,定
5、義這個群的函數(shù)不假定是可微的這個問題簡稱連續(xù)群的解析性,即:是否每一個局部歐氏群都有一定是李群?中間經(jīng)馮·諾伊曼(1933,對緊群情形)、邦德里雅金(1939,對交換群情形)、謝瓦莢(1941,對可解群情形)的努力,1952年由格利森、蒙哥馬利、齊賓共同解決,得到了完全肯定的結(jié)果。?6.物理學(xué)的公理化希爾伯特建議用數(shù)學(xué)的公理化方法推演出全部物理,首先是概率和力學(xué)。1933年,蘇聯(lián)數(shù)學(xué)家柯爾莫哥洛夫?qū)崿F(xiàn)了將概率論公理化。后來在量子力學(xué)、量子場論方面取得了很大成功。但是物理學(xué)是否能全盤公理化,很多人表示懷疑。?7.某些數(shù)的無理性與超越性1934年,A.O.蓋爾方德和T.施奈德各自獨立地
6、解決了問題的后半部分,即對于任意代數(shù)數(shù)α≠0,1,和任意代數(shù)無理數(shù)β證明了αβ的超越性。?8.素數(shù)問題包括黎曼猜想、哥德巴赫猜想及孿生素數(shù)問題等。一般情況下的黎曼猜想仍待解決。哥德巴赫猜想的最佳結(jié)果屬于陳景潤(1966),但離最解決尚有距離。目前孿生素數(shù)問題的最佳結(jié)果也屬于陳景潤。?9.在任意數(shù)域中證明最一般的互反律該問題已由日本數(shù)學(xué)家高木貞治(1921)和德國數(shù)學(xué)家E.阿廷(1927)解決。?10.丟番圖方程的可解性能求出一個整系數(shù)方程的整數(shù)根,稱為丟番圖方程可解。希爾伯特問,能否用一種由有限步構(gòu)成的一般算法判斷一個丟番圖方程的可解性?1970年,蘇聯(lián)的IO.B.馬季亞謝維奇證明
7、了希爾伯特所期望的算法不存在。?11.系數(shù)為任意代數(shù)數(shù)的二次型H.哈塞(1929)和C.L.西格爾(1936,1951)在這個問題上獲得重要結(jié)果。?12.將阿貝爾域上的克羅克定理推廣到任意的代數(shù)有理域上去這一問題只有一些零星的結(jié)果,離徹底解決還相差很遠(yuǎn)。?13.不可能用只有兩個變數(shù)的函數(shù)解一般的七次方程七次方程的根依賴于3個參數(shù)a、b、c,即x=x(a,b,c)。這個函數(shù)能否用二元函數(shù)表示出來?蘇聯(lián)數(shù)學(xué)家阿諾爾德解決了連續(xù)函數(shù)的情形(1957),維士斯金又把它推廣到了