離散小波變換的時間序列分析和挖掘

離散小波變換的時間序列分析和挖掘

ID:34522927

大?。?76.85 KB

頁數(shù):37頁

時間:2019-03-07

離散小波變換的時間序列分析和挖掘_第1頁
離散小波變換的時間序列分析和挖掘_第2頁
離散小波變換的時間序列分析和挖掘_第3頁
離散小波變換的時間序列分析和挖掘_第4頁
離散小波變換的時間序列分析和挖掘_第5頁
資源描述:

《離散小波變換的時間序列分析和挖掘》由會員上傳分享,免費在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。

1、6DiscreteWaveletTransform-BasedTimeSeriesAnalysisandMiningPIMWADEECHAOVALIT,NationalScienceandTechnologyDevelopmentAgencyARYYAGANGOPADHYAY,GEORGEKARABATIS,andZHIYUANCHEN,UniversityofMaryland,BaltimoreCountyTimeseriesarerecordedvaluesofaninterestingphenomenonsuchasstockprices

2、,householdincomes,orpatientheartratesoveraperiodoftime.Timeseriesdataminingfocusesondiscoveringinterestingpatternsinsuchdata.Thisarticleintroducesawavelet-basedtimeseriesdataanalysistointerestedreaders.Itprovidesasystematicsurveyofvariousanalysistechniquesthatusediscretewave

3、lettransformation(DWT)intimeseriesdatamining,andoutlinesthebene?tsofthisapproachdemonstratedbypreviousstudiesperformedondiverseapplicationdomains,includingimageclassi?cation,multimediaretrieval,andcomputernetworkanomalydetection.CategoriesandSubjectDescriptors:A.1[Introducto

4、ryandSurvey];G.3[ProbabilityandStatistics]:Timeseriesanalysis;H.2.8[DatabaseManagement]:DatabaseApplications—Datamining;I.5.4[PatternRecognition]:Applications—Signalprocessing,waveformanalysisGeneralTerms:Algorithms,Experimentation,Measurement,PerformanceAdditionalKeyWordsan

5、dPhrases:Classi?cation,clustering,anomalydetection,similaritysearch,predic-tion,datatransformation,dimensionalityreduction,noise?ltering,datacompressionACMReferenceFormat:Chaovalit,P.,Gangopadhyay,A.,Karabatis,G.,andChen,Z.2011.Discretewavelettransform-basedtimeseriesanalysi

6、sandmining.ACMComput.Surv.43,2,Article6(January2011),37pages.DOI=10.1145/1883612.1883613http://doi.acm.org/10.1145/1883612.18836131.INTRODUCTIONAtimeseriesisasequenceofdatathatrepresentrecordedvaluesofaphenomenonovertime.Timeseriesdataconstitutesalargeportionofthedatastoredi

7、nrealworlddatabases[Agrawaletal.1993].Timeseriesdataappearinmanyapplicationdomains,suchasin?nancial,meteorological,medical,socialsciences,computernetworks,andbusiness.Timeseriesarederivedfromrecordingobservationsofvarioustypesofphe-nomena,forexample,temperature,stockprices,h

8、ouseholdincome,patientheartrates,numberofbitstransferred,productsalesvolume

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文

此文檔下載收益歸作者所有

當(dāng)前文檔最多預(yù)覽五頁,下載文檔查看全文
溫馨提示:
1. 部分包含數(shù)學(xué)公式或PPT動畫的文件,查看預(yù)覽時可能會顯示錯亂或異常,文件下載后無此問題,請放心下載。
2. 本文檔由用戶上傳,版權(quán)歸屬用戶,天天文庫負(fù)責(zé)整理代發(fā)布。如果您對本文檔版權(quán)有爭議請及時聯(lián)系客服。
3. 下載前請仔細(xì)閱讀文檔內(nèi)容,確認(rèn)文檔內(nèi)容符合您的需求后進行下載,若出現(xiàn)內(nèi)容與標(biāo)題不符可向本站投訴處理。
4. 下載文檔時可能由于網(wǎng)絡(luò)波動等原因無法下載或下載錯誤,付費完成后未能成功下載的用戶請聯(lián)系客服處理。