資源描述:
《垂徑定理及其推論.doc》由會(huì)員上傳分享,免費(fèi)在線(xiàn)閱讀,更多相關(guān)內(nèi)容在行業(yè)資料-天天文庫(kù)。
1、.圓部分知識(shí)點(diǎn)總結(jié)垂徑定理及其推論垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的弧。推論1:(1)平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧。(2)弦的垂直平分線(xiàn)經(jīng)過(guò)圓心,并且平分弦所對(duì)的兩條弧。(3)平分弦所對(duì)的一條弧的直徑垂直平分弦,并且平分弦所對(duì)的另一條弧。推論2:圓的兩條平行弦所夾的弧相等。垂徑定理及其推論可概括為:過(guò)圓心垂直于弦直徑平分弦知二推三平分弦所對(duì)的優(yōu)弧平分弦所對(duì)的劣弧弧、弦、弦心距、圓心角之間的關(guān)系定理1:在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦相等,所對(duì)的弦的弦心距相等。2:在同圓或等圓中,如果兩個(gè)圓的圓心角、兩條弧、兩條弦或兩條弦的弦心距中
2、有一組量相等,那么它們所對(duì)應(yīng)的其余各組量都分別相等。圓周角定理:一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半。推論1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧也相等。推論2:半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。推論3:如果三角形一邊上的中線(xiàn)等于這邊的一半,那么這個(gè)三角形是直角三角形。點(diǎn)和圓的位置關(guān)系設(shè)⊙O的半徑是r,點(diǎn)P到圓心O的距離為d,則有:dr點(diǎn)P在⊙O外。過(guò)三點(diǎn)的圓1、不在同一直線(xiàn)上的三個(gè)點(diǎn)確定一個(gè)圓。2、經(jīng)過(guò)三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓。3、三角形的外接圓的圓心是三角形三條邊的垂直平分
3、線(xiàn)的交點(diǎn),它叫做這個(gè)三角形的外心。直線(xiàn)與圓的位置關(guān)系直線(xiàn)和圓有三種位置關(guān)系,具體如下:(1)相交:直線(xiàn)和圓有兩個(gè)公共點(diǎn)時(shí),叫做直線(xiàn)和圓相交,這時(shí)直線(xiàn)叫做圓的割線(xiàn),公共點(diǎn)叫做交點(diǎn);(2)相切:直線(xiàn)和圓有唯一公共點(diǎn)時(shí),叫做直線(xiàn)和圓相切,這時(shí)直線(xiàn)叫做圓的切線(xiàn),(3)相離:直線(xiàn)和圓沒(méi)有公共點(diǎn)時(shí),叫做直線(xiàn)和圓相離。如果⊙O的半徑為r,圓心O到直線(xiàn)L的距離為d,那么:直線(xiàn)L與⊙O相交dr;圓的內(nèi)接四邊形定理:圓的內(nèi)接四邊形的對(duì)角互補(bǔ),外角等于它的內(nèi)對(duì)角。切線(xiàn)的性質(zhì)與判定定理1、切線(xiàn)的判定定理:過(guò)半徑外端且垂直于半徑的直線(xiàn)是切線(xiàn);兩個(gè)條件:過(guò)半徑外端且垂直半
4、徑,二者缺一不可2、性質(zhì)定理:切線(xiàn)垂直于過(guò)切點(diǎn)的半徑推論1:過(guò)圓心垂直于切線(xiàn)的直線(xiàn)必過(guò)切點(diǎn)。推論2:過(guò)切點(diǎn)垂直于切線(xiàn)的直線(xiàn)必過(guò)圓心。以上三個(gè)定理及推論也稱(chēng)二推一定理:即:①過(guò)圓心;②過(guò)切點(diǎn);③垂直切線(xiàn),三個(gè)條件中知道其中兩個(gè)條件就能推出最后一個(gè)。切線(xiàn)長(zhǎng)定理切線(xiàn)長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(zhǎng)相等,這點(diǎn)和圓心的連線(xiàn)平分兩條切線(xiàn)的夾角。即:∵、是兩條切線(xiàn)∴;平分..圓冪定理1、相交弦定理:圓內(nèi)兩弦相交,交點(diǎn)分得的兩條線(xiàn)段的乘積相等。即:在⊙中,∵弦、相交于點(diǎn),∴推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線(xiàn)段的比例中項(xiàng)。即:在⊙中,∵直徑,∴切割線(xiàn)定理:從圓外一點(diǎn)引圓
5、的切線(xiàn)和割線(xiàn),切線(xiàn)長(zhǎng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(zhǎng)的比例中項(xiàng)。即:在⊙中,∵是切線(xiàn),是割線(xiàn)∴割線(xiàn)定理:從圓外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(zhǎng)的積相等(如右圖)。即:在⊙中,∵、是割線(xiàn)∴兩圓公共弦定理圓公共弦定理:兩圓圓心的連線(xiàn)垂直并且平分這兩個(gè)圓的的公共弦。如圖:垂直平分。即:∵⊙、⊙相交于、兩點(diǎn)∴垂直平分圓的公切線(xiàn)(1)公切線(xiàn)的長(zhǎng):中,;(2)外公切線(xiàn)的長(zhǎng):是半徑之差;是半徑之和三角形的內(nèi)切圓和外接圓1、三角形的內(nèi)切圓與三角形的各邊都相切的圓叫做三角形的內(nèi)切圓。2、三角形的內(nèi)心三角形的內(nèi)切圓的圓心是三角形的三條內(nèi)角平分線(xiàn)的交點(diǎn),它叫做三角形的內(nèi)心。圓和圓的位置關(guān)系
6、1、圓和圓的位置關(guān)系如果兩個(gè)圓沒(méi)有公共點(diǎn),那么就說(shuō)這兩個(gè)圓相離,相離分為外離和內(nèi)含兩種。如果兩個(gè)圓只有一個(gè)公共點(diǎn),那么就說(shuō)這兩個(gè)圓相切,相切分為外切和內(nèi)切兩種。如果兩個(gè)圓有兩個(gè)公共點(diǎn),那么就說(shuō)這兩個(gè)圓相交。2、圓心距兩圓圓心的距離叫做兩圓的圓心距。3、圓和圓位置關(guān)系的性質(zhì)與判定設(shè)兩圓的半徑分別為R和r,圓心距為d,那么兩圓外離d>R+r兩圓外切d=R+r兩圓相交R-rr)兩圓內(nèi)含dr)4、兩圓相切、相交的重要性質(zhì)如果兩圓相切,那么切點(diǎn)一定在連心線(xiàn)上,它們是軸對(duì)稱(chēng)圖形,對(duì)稱(chēng)軸是兩圓的連心線(xiàn);相交的兩個(gè)圓的連心線(xiàn)垂直平分兩圓的公共弦。圓內(nèi)
7、正多邊形的計(jì)算1.正三角形在⊙中△是正三角形,有關(guān)計(jì)算在中進(jìn)行:;..2.正四邊形同理,四邊形的有關(guān)計(jì)算在中進(jìn)行,:3.正六邊形同理,六邊形的有關(guān)計(jì)算在中進(jìn)行,.弧長(zhǎng)和扇形面積1、弧長(zhǎng)公式n°的圓心角所對(duì)的弧長(zhǎng)的計(jì)算公式為2、扇形面積公式其中n是扇形的圓心角度數(shù),R是扇形的半徑,L是扇形的弧長(zhǎng)。3、圓錐的側(cè)面積其中L是圓錐的母線(xiàn)長(zhǎng),r是圓錐的底面半徑。內(nèi)切圓及有關(guān)計(jì)算。(1)三角形內(nèi)切圓的圓心是三