資源描述:
《現(xiàn)代時(shí)間序列分析模型.ppt》由會(huì)員上傳分享,免費(fèi)在線閱讀,更多相關(guān)內(nèi)容在教育資源-天天文庫。
1、第八講現(xiàn)代時(shí)間序列分析模型§1時(shí)間序列平穩(wěn)性和單位根檢驗(yàn)§2協(xié)整與誤差修正模型經(jīng)典時(shí)間序列分析模型:MA、AR、ARMA平穩(wěn)時(shí)間序列模型分析時(shí)間序列自身的變化規(guī)律現(xiàn)代時(shí)間序列分析模型:分析時(shí)間序列之間的關(guān)系單位根檢驗(yàn)、協(xié)整檢驗(yàn)現(xiàn)代宏觀計(jì)量經(jīng)濟(jì)學(xué)§1時(shí)間序列平穩(wěn)性和單位根檢驗(yàn)一、時(shí)間序列的平穩(wěn)性二、單整序列三、單位根檢驗(yàn)一、時(shí)間序列的平穩(wěn)性StationaryTimeSeries⒈問題的提出經(jīng)典計(jì)量經(jīng)濟(jì)模型常用到的數(shù)據(jù)有:時(shí)間序列數(shù)據(jù)(time-seriesdata);截面數(shù)據(jù)(cross-sectionaldata)平行/面板數(shù)據(jù)(paneldata/time-seriescro
2、ss-sectiondata)時(shí)間序列數(shù)據(jù)是最常見,也是最常用到的數(shù)據(jù)。經(jīng)典回歸分析暗含著一個(gè)重要假設(shè):數(shù)據(jù)是平穩(wěn)的。數(shù)據(jù)非平穩(wěn),大樣本下的統(tǒng)計(jì)推斷基礎(chǔ)——“一致性”要求——被破懷。數(shù)據(jù)非平穩(wěn),往往導(dǎo)致出現(xiàn)“虛假回歸”(SpuriousRegression)問題。表現(xiàn)為兩個(gè)本來沒有任何因果關(guān)系的變量,卻有很高的相關(guān)性。例如:如果有兩列時(shí)間序列數(shù)據(jù)表現(xiàn)出一致的變化趨勢(shì)(非平穩(wěn)的),即使它們沒有任何有意義的關(guān)系,但進(jìn)行回歸也可表現(xiàn)出較高的可決系數(shù)。2、平穩(wěn)性的定義假定某個(gè)時(shí)間序列是由某一隨機(jī)過程(stochasticprocess)生成的,即假定時(shí)間序列{Xt}(t=1,2,…)的每
3、一個(gè)數(shù)值都是從一個(gè)概率分布中隨機(jī)得到,如果滿足下列條件:均值E(Xt)=?是與時(shí)間t無關(guān)的常數(shù);方差Var(Xt)=?2是與時(shí)間t無關(guān)的常數(shù);協(xié)方差Cov(Xt,Xt+k)=?k是只與時(shí)期間隔k有關(guān),與時(shí)間t無關(guān)的常數(shù);則稱該隨機(jī)時(shí)間序列是平穩(wěn)的(stationary),而該隨機(jī)過程是一平穩(wěn)隨機(jī)過程(stationarystochasticprocess)。寬平穩(wěn)、廣義平穩(wěn)白噪聲(whitenoise)過程是平穩(wěn)的:Xt=?t,?t~N(0,?2)隨機(jī)游走(randomwalk)過程是非平穩(wěn)的:Xt=Xt-1+?t,?t~N(0,?2)Var(Xt)=t?2隨機(jī)游走的一階差分(f
4、irstdifference)是平穩(wěn)的:?Xt=Xt-Xt-1=?t,?t~N(0,?2)如果一個(gè)時(shí)間序列是非平穩(wěn)的,它常常可通過取差分的方法而形成平穩(wěn)序列。二、單整序列IntegratedSeries如果一個(gè)時(shí)間序列經(jīng)過一次差分變成平穩(wěn)的,就稱原序列是一階單整(integratedof1)序列,記為I(1)。一般地,如果一個(gè)時(shí)間序列經(jīng)過d次差分后變成平穩(wěn)序列,則稱原序列是d階單整(integratedofd)序列,記為I(d)。I(0)代表一平穩(wěn)時(shí)間序列?,F(xiàn)實(shí)經(jīng)濟(jì)生活中只有少數(shù)經(jīng)濟(jì)指標(biāo)的時(shí)間序列表現(xiàn)為平穩(wěn)的,如利率等;大多數(shù)指標(biāo)的時(shí)間序列是非平穩(wěn)的,例如,以當(dāng)年價(jià)表示的消費(fèi)額、
5、收入等常是2階單整的,以不變價(jià)格表示的消費(fèi)額、收入等常表現(xiàn)為1階單整。大多數(shù)非平穩(wěn)的時(shí)間序列一般可通過一次或多次差分的形式變?yōu)槠椒€(wěn)的。但也有一些時(shí)間序列,無論經(jīng)過多少次差分,都不能變?yōu)槠椒€(wěn)的。這種序列被稱為非單整的(non-integrated)。三、平穩(wěn)性的單位根檢驗(yàn)(unitroottest)1、DF檢驗(yàn)(Dicky-FullerTest)通過上式判斷Xt是否有單位根,就是時(shí)間序列平穩(wěn)性的單位根檢驗(yàn)。隨機(jī)游走,非平穩(wěn)對(duì)該式回歸,如果確實(shí)發(fā)現(xiàn)ρ=1,則稱隨機(jī)變量Xt有一個(gè)單位根。等價(jià)于通過該式判斷是否存在δ=0。一般檢驗(yàn)?zāi)P土慵僭O(shè)H0:?=0備擇假設(shè)H1:?<0可通過OLS法下
6、的t檢驗(yàn)完成。但是,在零假設(shè)(序列非平穩(wěn))下,即使在大樣本下t統(tǒng)計(jì)量也是有偏誤的(向下偏倚),通常的t檢驗(yàn)無法使用。Dicky和Fuller于1976年提出了這一情形下t統(tǒng)計(jì)量服從的分布(這時(shí)的t統(tǒng)計(jì)量稱為?統(tǒng)計(jì)量),即DF分布。由于t統(tǒng)計(jì)量的向下偏倚性,它呈現(xiàn)圍繞小于零均值的偏態(tài)分布。如果t<臨界值,則拒絕零假設(shè)H0:?=0,認(rèn)為時(shí)間序列不存在單位根,是平穩(wěn)的。單尾檢驗(yàn)2、ADF檢驗(yàn)(AugmentDickey-Fullertest)為什么將DF檢驗(yàn)擴(kuò)展為ADF檢驗(yàn)?DF檢驗(yàn)假定時(shí)間序列是由具有白噪聲隨機(jī)誤差項(xiàng)的一階自回歸過程AR(1)生成的。但在實(shí)際檢驗(yàn)中,時(shí)間序列可能由更高
7、階的自回歸過程生成,或者隨機(jī)誤差項(xiàng)并非是白噪聲,用OLS法進(jìn)行估計(jì)均會(huì)表現(xiàn)出隨機(jī)誤差項(xiàng)出現(xiàn)自相關(guān),導(dǎo)致DF檢驗(yàn)無效。如果時(shí)間序列含有明顯的隨時(shí)間變化的某種趨勢(shì)(如上升或下降),也容易導(dǎo)致DF檢驗(yàn)中的自相關(guān)隨機(jī)誤差項(xiàng)問題。ADF檢驗(yàn)?zāi)P土慵僭O(shè)H0:?=0備擇假設(shè)H1:?<0模型1模型2模型3檢驗(yàn)過程實(shí)際檢驗(yàn)時(shí)從模型3開始,然后模型2、模型1。何時(shí)檢驗(yàn)拒絕零假設(shè),即原序列不存在單位根,為平穩(wěn)序列,何時(shí)停止檢驗(yàn)。否則,就要繼續(xù)檢驗(yàn),直到檢驗(yàn)完模型1為止。檢驗(yàn)原理與DF檢驗(yàn)相同,只是對(duì)模