資源描述:
《《代入消元法》教學設計》由會員上傳分享,免費在線閱讀,更多相關內(nèi)容在教育資源-天天文庫。
1、2013新人教版七年級數(shù)學下冊全冊教案第五章相交線與平行線5.1.1相交線教學目標:1.理解對頂角和鄰補角的概念,能在圖形中辨認. 2.掌握對頂角相等的性質(zhì)和它的推證過程. 3.通過在圖形中辨認對頂角和鄰補角,培養(yǎng)學生的識圖能力.重點:在較復雜的圖形中準確辨認對頂角和鄰補角.難點:在較復雜的圖形中準確辨認對頂角和鄰補角.教學過程一、創(chuàng)設情境,引入課題先請同學觀察本章的章前圖,然后引導學生觀察,并回答問題.學生活動:口答哪些道路是交錯的,哪些道路是平行的.教師導入:圖中的道路是有寬度的,是有限長的
2、,而且也不是完全直的,當我們把它們看成直線時,這些直線有些是相交線,有些是平行線.相交線、平行線都有許多重要性質(zhì),并且在生產(chǎn)和生活中有廣泛應用.所以研究這些問題對今后的工作和學習都是有用的,也將為后面的學習做些準備.我們先研究直線相交的問題,引入本節(jié)課題.二、探究新知,講授新課1.對頂角和鄰補角的概念 學生活動:觀察上圖,同桌討論,教師統(tǒng)一學生觀點并板書. 【板書】∠1與∠3是直線AB、CD相交得到的,它們有一個公共頂點O,沒有公共邊,像這樣的兩個角叫做對頂角. 學生活動:讓學生找一找上圖中還
3、有沒有對頂角,如果有,是哪兩個角? 學生口答:∠2和∠4再也是對頂角. 緊扣對頂角定義強調(diào)以下兩點: (1)辨認對頂角的要領:一看是不是兩條直線相交所成的角,對頂角與相交線是唇齒相依,哪里有相交直線,哪里就有對頂角,反過來,哪里有對頂角,哪里就有相交線;二看是不是有公共頂點;三看是不是沒有公共邊.符合這三個條件時,才能確定這兩個角是對頂角,只具備一個或兩個條件都不行. (2)對頂角是成對存在的,它們互為對頂角,如∠1是∠3的對頂角,同時,∠3是∠1的對頂角,也常說∠1和∠3是對頂角.2.對頂
4、角的性質(zhì) 提出問題:我們在圖形中能準確地辨認對頂角,那么對頂角有什么性質(zhì)呢? 學生活動:學生以小組為單位展開討論,選代表發(fā)言,井口答為什么. 【板書】∵∠1與∠2互補,∠3與∠2互補(鄰補角定義), ∴∠l=∠3(同角的補角相等). 注意:∠l與∠2互補不是給出的已知條件,而是分析圖形得到的;所以括號內(nèi)不填已知,而填鄰補角定義. 或寫成:∵∠1=180°-∠2,∠3=180°-∠2(鄰補角定義), ∴∠1=∠3(等量代換). 學生活動:例題比較簡單,教師不做任何提示,讓學生在練習本上獨
5、立完成解題過程,請一個學生板演?! 〗猓骸?=∠1=40°(對頂角相等). ∠2=180°-40°=140°(鄰補角定義). ∠4=∠2=140°(對頂角相等).三、范例學習學生活動:讓學生把例題中∠1=40°這個條件換成其他條件,而結論不變,自編幾道題. 變式1:把∠l=40°變?yōu)椤?-∠1=40° 變式2:把∠1=40°變?yōu)椤?是∠l的3倍 變式3:把∠1=40°變?yōu)椤?:∠2=2:9四、課堂小結學生活動:表格中的結論均由學生自己口答填出.角的名稱特征性質(zhì)相同點不同點對頂角①兩條直線相
6、交面成的角②有一個公共頂點③沒有公共邊對頂角相等都是兩直線相交而成的角,都有一個公共頂點,它們都是成對出現(xiàn)。對頂角沒有公共邊而鄰補角有一條公共邊;兩條直線相交時,一個有的對頂角有一個,而一個角的鄰補角有兩個。鄰補角①兩條直線相交面成的角②有一個公共頂點③有一條公共邊鄰補角互補五、布置作業(yè):課本P3練習5.1.2垂線(第一課時)教學目標:1.經(jīng)歷觀察、操作、想像、歸納概括、交流等活動,進一步發(fā)展空間觀念,用幾何語言準確表達能力.毛2.了解垂直概念,能說出垂線的性質(zhì)“經(jīng)過一點,能畫出已知直線的一條垂線,
7、并且只能畫出一條垂線”,會用三角尺或量角器過一點畫一條直線的垂線.重點兩條直線互相垂直的概念、性質(zhì)和畫法.教學過程一、創(chuàng)設問題情境1.學生觀察教室里的課桌面、黑板面相鄰的兩條邊,方格紙的橫線和豎線……,思考這些給大家什么印象?在學生回答之后,教師指出:“垂直”兩個字對大家并不陌生,但是垂直的意義,垂線有什么性質(zhì),我們不一定都了解,這可是我們要學習的內(nèi)容.2.學生觀察課本P3圖5.1-4思考:固定木條a,轉動木條,當b的位置變化時,a、b所成的角a是如何變化的?其中會有特殊情況出現(xiàn)嗎?當這種情況出現(xiàn)時
8、,a、b所成的四個角有什么特殊關系?教師在組織學生交流中,應學生明白:當b的位置變化時,角a從銳角變?yōu)殁g角,其中∠a是直角是特殊情況.其特殊之處還在于:當∠a是直角時,它的鄰補角,對頂角都是直角,即a、b所成的四個角都是直角,都相等.3.師生共同給出垂直定義.師生分清“互相垂直”與“垂線”的區(qū)別與聯(lián)系:“互相垂直”指兩條直線的位置關系;“垂線”是指其中一條直線對另一條直線的命名。如果說兩條直線“互相垂直”時,其中一條必定是另一條的“垂線”,如果一條直線是另一條直線的“